Mechanical and rheological properties of polystyrene-block-polybutadiene-block-polystyrene copolymer reinforced with carbon nanotubes: effect of processing conditions

2018 ◽  
Vol 38 (2) ◽  
pp. 107-117 ◽  
Author(s):  
Rossella Arrigo ◽  
Rosalia Teresi ◽  
Nadka Tzankova Dintcheva

Abstract Styrene-b-butadiene-b-styrene (SBS)-based nanocomposites filled with unmodified and –COOH functionalized carbon nanotubes (CNTs) have been formulated at different processing conditions in order to provide an understanding of the influence of the processing temperature and mixing speed on the nanofillers dispersion and on the overall properties of the nanocomposites. The evaluation of the nanocomposites’ mechanical and rheological behavior reveals that the effect of the processing speed on the final properties is almost negligible. Differently, the processing temperature influences strongly the mechanical and rheological properties of SBS-based nanocomposites. Indeed, for the nanocomposites formulated at high temperatures a significant enhancement of the overall properties with respect to the neat matrix has been achieved. Moreover, morphological analyses show that the state of dispersion of both unmodified and functionalized CNTs progressively improves as the processing temperature increases. Particularly, at low processing temperatures a segregated morphology in which the nanofillers are selectively confined in the domains of the SBS matrix has been obtained, while the nanocomposites formulated at 180°C show a homogeneous and uniform CNTs dispersion throughout the matrix and a strong level of interfacial adhesion between the copolymer chains and the dispersed nanofillers.

2014 ◽  
Vol 5 (6) ◽  
pp. 651-659 ◽  
Author(s):  
Babak Fazelabdolabadi ◽  
Abbas Ali Khodadadi ◽  
Mostafa Sedaghatzadeh

2020 ◽  
Vol 57 (3) ◽  
pp. 249-259
Author(s):  
Baifen Liu ◽  
Mohammad Mirjalili ◽  
Peiman Valipour ◽  
Sajad Porzal ◽  
shirin Nourbakhsh

This research deals with the mechanical properties, microstructure, and interrelations of triple nanocomposite based on PET/EPDM/Nanoclay. These properties were examined in different percentages of PET/EPDM blend with compatibilizer (Styrene-Ethylene/Butylene-Styrene)-G-(Maleic anhydrate) (SEBS-g-MAH). Results showed that the addition of 15% SEBS-g-MAH improved the toughness and impact strength of this nanocomposite. SEM micrographs indicated the most stable fuzzy microstructure in a 50/50 mixture of scattered phases of EPDM/SEBS-g-MAH. The effects of percentages of 1, 3, 5, 7 nanoclay Cloisite 30B (C30B) on the improvement of the properties were evaluated. With the addition of nano clay, the toughness and impact strength was reduced. Thermal destruction of nanoclay in processing temperature led to the decreasing dispersion of clay plates in the matrix and a reduction in the distances of nano clay plates in the composite compared to pure nano clay. XRD and TEM analysis was used to demonstrate the results. By adding 1% of nanoclay to the optimal sample, maximum stiffness, and Impact strength, among other nanocomposites, was achieved.


2013 ◽  
Vol 85 (17) ◽  
pp. 8391-8396 ◽  
Author(s):  
Jing Pan ◽  
Hanyu Zhang ◽  
Tae-Gon Cha ◽  
Haorong Chen ◽  
Jong Hyun Choi

ACS Nano ◽  
2021 ◽  
Author(s):  
Yu Zheng ◽  
Younghee Kim ◽  
Andrew C. Jones ◽  
Gabrielle Olinger ◽  
Eric R. Bittner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document