cloisite 30b
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 38)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 63 (12) ◽  
pp. 1124-1129
Author(s):  
Hari Bodipatti Subburamamurthy ◽  
Rajasekar Rathanasamy ◽  
Harikrishna Kumar Mohan Kumar ◽  
Moganapriya Chinnasamy ◽  
Gobinath Velu Kaliyannan ◽  
...  

Abstract Nylon is used as a gear material thanks to its beneficial characteristics, such as self-lubrication, noiseless and fail-safe operation. Poor resistance to heat, dimensional stability, shock and impact loads are major drawbacks of nylon when used in engineering applications. The addition of a nanofiller to a nylon matrix can enhance its mechanical and vibrational properties. Montmorillonite nanoclay (Cloisite 15 A, Cloisite 20 A and Cloisite 30B) modified with ammonium salt was incorporated into the Nylon 6 matrix by solution mixing and melt mixing. Nanoclay with 1, 2 and 3 wt.-% were added to the nylon matrix and the resulting mechanical and free vibration characteristics were determined. The experimental results of the mechanical and free vibration behavior were compared with the ANSYS results. Tensile strength, modulus of elasticity, specific strength, specific stiffness, natural frequency and damping factor were found to increase as the weight percentage of the nanoclay in the nylon matrix increased. Cloisite 30B nanocomposite shows better mechanical and free vibration characteristics when compared with pure Nylon 6, Cloisite 15 A and Cloisite 20 A nanocomposites. The Cloisite 30B nano-composite was prepared with 2 wt.-% shows maximum mechanical and free vibration performance.


2021 ◽  
Author(s):  
Hamid Safarzadeh ◽  
Seyed Jamaleddin Peighambardoust ◽  
Seyed Hamed Mousavi ◽  
Reza Mohammadi ◽  
Rauf Foroutan ◽  
...  

Abstract The performance of poly(methacrylic acid-co-acrylamide/nanoclay composite (poly(MAA-co-AAm)/NCC) hydrogel to adsorb methylene blue (MB) dye from aqueous solutions was investigated and the adsorption efficiency was improved by incorporating Cloisite 30B nanoclays in the adsorbent structure. The hydrogels were analyzed using FTIR, XRD, TGA, and SEM analysis. The effect of adsorbent dose, temperature, initial dye concentration, contact time, and pH on the efficiency of the adsorption process was investigated. Adsorption efficiencies of 98.57 and 97.65% were obtained for poly(MAA-co-AAm)/NCC and poly(MAA-co-AAm) hydrogels, respectively. Kinetic study revealed that the adsorption process followed pseudo-first-order kinetic model and α-parameter values of 6.558 and 1.113 mg/g.min were obtained for poly(MAA-co-AAm)/NCC and poly(MAA-co-AAm) hydrogels, respectively indicating a higher ability of nanocomposite hydrogel in adsorbing MB-dye. In addition, the results of the intra-particle diffusion model showed that various mechanisms such as intra-particle diffusion and liquid film penetration are important in the adsorption. The Gibbs free energy parameter of adsorption process showed negative values of -256.52 and -84.071 J/mol.K for poly(MAA-co-AAm)/NCC and poly(MAA-co-AAm) hydrogels indicating spontaneous nature of the adsorption. The results of enthalpy and entropy showed that the adsorption process was exothermic and random collisions were reduced during the adsorption. The equilibrium data for the adsorption process using poly(MAA-co-AAm)/NCC and poly(MAA-co-AAm) hydrogels followed Freundlich and Langmuir isotherm models, respectively. The maximum adsorption capacity values of 32.83 and 21.92 mg/g were obtained for poly(MAA-co-AAm)/NCC and poly(MAA-co-AAm) hydrogels, respectively. Higher adsorption capacity of nanocomposite hydrogel was attributed to the presence of Cloisite 30B clay nanoparticles in its structure. In addition, results of RL, n, and E parameters showed that the adsorption process was performed optimally and physically.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 682
Author(s):  
Ferhat Sellami ◽  
Ounissa Kebiche-Senhadji ◽  
Stéphane Marais ◽  
Charles Lanel ◽  
Kateryna Fatyeyeva

Novel hybrid polymer inclusion membranes (PIMs) based on poly(vinylidene fluoride) (PVDF) (polymer matrix) and Aliquat 336 (ion carrier) and containing native sodium (Cloisite Na+ (CNa)) and organo-modified (Cloisite 30B (C30B)) Montmorillonites were elaborated and tested for the removal of toxic Cr(VI) ions from the aqueous solution. The influence of the nanoclay incorporation on the physicochemical properties of PVDF-based PIMs was studied and the resulting membrane transport properties of the Cr(VI) ions were investigated in detail. The water contact angle measurements reveal that the incorporation of the CNa nanofiller affects the membrane wettability as less hydrophilic surface is obtained in this case—~47° in the presence of CNa as compared with ~15° for PIMs with C30B. The membrane rigidity is found to be dependent on the type and size of the used Montmorillonite. The increase of Young’s modulus is higher when CNa is incorporated in comparison with C30B. The stiffness of the PIM is strongly increased with CNa amount (four times higher with 30 wt %) which is not the case for C30B (only 1.5 times). Higher Cr(VI) permeation flux is obtained for PIMs containing CNa (~2.7 µmol/(m2·s)) owing to their porous structure as compared with membranes loaded with C30B and those without filler (~2 µmol/(m2·s) in both cases). The PIM with 20 wt % of native sodium Montmorillonite revealed satisfactory stability during five cycles of the Cr(VI) transport due to the high membrane rigidity and hydrophobicity. Much lower macromolecular chain mobility in this case allows limiting the carrier loss, thus increasing the membrane stability. On the contrary, a deterioration of the transport performance is recorded for the membrane filled with C30B and that without filler. The obtained results showed the possibility to extend the PIM lifetime through the incorporation of nanoparticles that diminish the carrier loss (Aliquat 336) from the membrane into the aqueous phase by limiting its mobility within the membrane by tortuosity effect and membrane stiffening without losing its permselective properties.


2021 ◽  
Vol 210 ◽  
pp. 106174
Author(s):  
Parisa Panahi ◽  
Saied Nouri Khorasani ◽  
Mohammad Sadegh Koochaki ◽  
Mohammad Dinari ◽  
Oisik Das ◽  
...  

2021 ◽  
Vol 36 (3) ◽  
pp. 287-296
Author(s):  
M. Nofar ◽  
M. Mohammadi ◽  
P. J. Carreau

Abstract Blends of a poly(butylene adipate-co-terephthalate) (PBAT) and a low density polyethylene (LDPE) (80 wt%/20 wt%) were prepared through a twin screw extruder while incorporating 3 wt% Cloisite 30B (C30B) nanoclay that possessed a much higher affinity with PBAT. The blends were processed through three melt mixing strategies: ( i) direct mixing of all three components, (ii) mixing C30B and PBAT followed by mixing with LDPE, and (iii) mixing C30B and LDPE followed by mixing with PBAT. The rheological properties of each system were determined in small amplitude oscillatory shear (SAOS) experiments. The migration of C30B nanoparticles from the LDPE minor phase towards the PBAT matrix was then monitored in the blend nanocomposites prepared through strategy (iii) via SAOS time sweep experiments. It was firstly understood that the C30B migration could be detected during time sweep SAOS experiments. The migration time was observed to be frequency dependent due to the smaller length scales probed at larger frequencies. Such migration occurred even faster when the SAOS time sweep experiments were conducted at a higher temperature due to the viscosity reduction.


Author(s):  
Muhammad Shoaib ◽  
Balakrishnan Subeshan ◽  
Waseem S Khan ◽  
Eylem Asmatulu

Plastic waste has been growing every year, and as a result, environmental concern has been a topic of much attention. Many properties of plastics, such as their lightweight, durability, and versatility, are significant factors in achieving sustainable development. The exponential increase of plastic production produces every year approximately 100 million tons of waste plastic, which could be converted into hydrocarbon fuels by employing a process appropriately called pyrolysis. Pyrolysis, which is thermal or catalytical, can be performed under different experimental conditions that affect the type and amount of product obtained. With the pyrolysis process, products can be obtained with high added value, such as fuel oils and feedstock for new products. In this study, magnesium silicate (MgO3Si) and Cloisite 30B were used as catalysts for the decomposition of different plastics, and the results were compared with the zeolite catalyst. In the case of high-density polyethylene (HDPE), the oil yield with a zeolite catalyst was found to be 71%, whereas with MgO3Si and Cloisite 30B, this was 68% and 67%, respectively. Zeolite produced better results in the decomposition of polypropylene (PP) compared to MgO3Si and Cloisite 30B. Fourier-transform infrared spectroscopy (FTIR), and gas chromatography (GC) were conducted in this work. The spectra results for all samples were consistent and in the fuel range.


Sign in / Sign up

Export Citation Format

Share Document