INM RAS coupled atmosphere–ionosphere general circulation model INMAIM (0–130 km)

2018 ◽  
Vol 33 (6) ◽  
pp. 351-357 ◽  
Author(s):  
Dmitry V. Kulyamin ◽  
Evgenii M. Volodin

Abstract The paper presents a new INM RAS atmospheric general circulation model, which includes troposphere, stratosphere, mesosphere, and the lower thermosphere, as well as the lower ionospheric regions (INMAIM). Based on the atmospheric part of the INM climatic model INMCM, a new general circulation model was created by adding the middle atmosphere and lower ionosphere description up to 130 km altitudes. A new computational unit for radiative processes calculation was developed for this purpose. For the lower ionosphere a separate plasma chemistry local model was created. The identification of the INMAIM model climate in the mesosphere and lower thermosphere was carried out based on climatological observations. It was shown that model reproduces the general climatic characteristics considerably well.

2002 ◽  
Vol 20 (2) ◽  
pp. 225-235 ◽  
Author(s):  
M. J. Harris ◽  
N. F. Arnold ◽  
A. D. Aylward

Abstract. A new coupled middle atmosphere and thermosphere general circulation model has been developed, and some first results are presented. An investigation into the effects of the diurnal tide upon the mean composition, dynamics and energetics was carried out for equinox conditions. Previous studies have shown that tides deplete mean atomic oxygen in the upper mesosphere-lower thermosphere due to an increased recombination in the tidal displaced air parcels. The model runs presented suggest that the mean residual circulation associated with the tidal dissipation also plays an important role. Stronger lower boundary tidal forcing was seen to increase the equatorial local diurnal maximum of atomic oxygen and the associated 0(1S) 557.7 nm green line volume emission rates. The changes in the mean background temperature structure were found to correspond to changes in the mean circulation and exothermic chemical heating.Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry) Meterology and atmospheric dynamics (middle atmosphere dynamics; waves and tides)


2020 ◽  
Vol 12 (5) ◽  
pp. 803-815
Author(s):  
B. N. Chetverushkin ◽  
I. V. Mingalev ◽  
E. A. Fedotova ◽  
K. G. Orlov ◽  
V. M. Chechetkin ◽  
...  

2021 ◽  
Author(s):  
Haruka Okui ◽  
Kaoru Sato ◽  
Dai Koshin ◽  
Shingo Watanabe

<p>After several recent stratospheric sudden warming (SSW) events, the stratopause disappeared and reformed at a higher altitude, forming an elevated stratopause (ES). The relative roles of atmospheric waves in the mechanism of ES formation are still not fully understood. We performed a hindcast of the 2018/19 SSW event using a gravity-wave (GW) permitting general circulation model containing the mesosphere and lower thermosphere (MLT), and analyzed dynamical phenomena throughout the entire middle atmosphere. An ES formed after the major warming on 1 January 2019. There was a marked temperature maximum in the polar upper mesosphere around 28 December 2018 prior to the disappearance of the descending stratopause associated with the SSW. This temperature structure with two maxima in the vertical is referred to as a double stratopause (DS). We showed that adiabatic heating from the residual circulation driven by GW forcing (GWF) causes barotropic and/or baroclinic instability before DS formation, causing in situ generation of planetary waves (PWs). These PWs propagate into the MLT and exert negative forcing, which contributes to DS formation. Both negative GWF and PWF above the recovered eastward jet play crucial roles in ES formation. The altitude of the recovered eastward jet, which regulates GWF and PWF height, is likely affected by the DS structure. Simple vertical propagation from the lower atmosphere is insufficient to explain the presence of the GWs observed in this event.</p>


Sign in / Sign up

Export Citation Format

Share Document