scholarly journals Calculation Model for the Mixing Amount of Internal Curing Materials in High-strength Concrete based on Modified MULTIMOORA

2020 ◽  
Vol 27 (1) ◽  
pp. 455-463
Author(s):  
Lixia Guo ◽  
Minghua Wang ◽  
Ling Zhong ◽  
Yanan Zhang

AbstractThe internal curing technology has been widely applied to high-strength concrete, for it can make the high-strength concrete marked by low shrinkage and durable frost resistance. The key to its extension and application lies in the reasonable mixing amount of internal curing materials. To address this problem, scholars have proposed a method for determining the water demand in internal curing; however, the water release of internal curing materials is difficult to obtain by measurement due to the mixing method. Therefore, this paper proposed a calculation model for the mixing amount of internal curing materials based on the modified MULTIMOORA method (Multi-Objective Optimization on the basis of Ratio Analysis plus full multiplicative form). First, different internal curing materials (super absorbent polymer (SAP), lightweight aggregate (LWA)) and pretreatment methods were selected to calculate their compressive strength, self-shrinkage and frost durability according to a proposed test scheme on the mixing amount of internal curing materials, and in such case, the comprehensive performance evaluation of the above indexes was turned into a multi-attribute decision-making problem. Second, the ordered weighted averaging (OWA) method and the entropy weight method were used to determine the subjective and objective weights of the indexes respectively, to eliminate the impact of outliers in the subjective evaluation values. Finally, the comprehensive performance of each test group was sorted using MULTIMOORA, and based on the sorting results and the calculation model, the mixing amount of internal curing materials was determined. The numerical example application results showed that the mixing amount of SAP curing material calculated based on the model herein was 1.276 kg/m3, and the mixing method adopted the pre-water absorption method with the total water-binder ratio unchanged. The numerical example evaluation results were in good agreement with the test results. The internal curing effect of SAP was better than that of LWA, and reached the best when the mixing amount was calculated at 25 times the water release rate and the requirement for the maximum total water diversion was met. The study may provide new ideas for extension and application of the internal curing technology.

2021 ◽  
Vol 1 (3) ◽  
pp. 1-6
Author(s):  
Ferhad Rahim Karim

The demand for the construction of high-strength concrete in the civil engineering zone is growing, particularly in the last couple of years, due to the construction of sustainable and economic buildings with an extraordinary slim design. Concrete curing in construction is an operative manner and essential to provide that concrete structures meet future performance and durability. High-strength concrete has a low water-to-binder ratio; proper concrete curing is important to ensure its planned performance and durability. Conventionally, exterior curing applied after placing and casting concrete stays warm and moist to provide continued cement hydration. Lately, theoretically and experimentally comprehends that internal curing is an important tool to provide additional moisture in the concrete to enhance cement's hydration. Internal curing of high-strength concrete is an active technique to lessen or even remove autogenous shrinkage and effects on chemical shrinkage, dry shrinkage, etc. Most studies recently have emphasized that a reduction in high strength concrete mixtures' shrinkage is due to internal curing, and the compressive strength can increase higher in mixtures with LWA or SAP than in mixtures without this agent rising degree of hydration by providing extra water in the hydrated cement paste. However, the use of internal curing leads to improving the durability of high-strength concrete.


Sign in / Sign up

Export Citation Format

Share Document