A family of nonparametric unit root tests for processes driven by infinite variance innovations

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kemal Caglar Gogebakan

Abstract This paper presents extensions to the family of nonparametric fractional variance ratio (FVR) unit root tests of Nielsen (2009. “A Powerful Test of the Autoregressive Unit Root Hypothesis Based on a Tuning Parameter Free Statistic.” Econometric Theory 25: 1515–44) under heavy tailed (infinite variance) innovations. In this regard, we first develop the asymptotic theory for these FVR tests under this setup. We show that the limiting distributions of the tests are free of serial correlation nuisance parameters, but depend on the tail index of the infinite variance process. Then, we compare the finite sample size and power performance of our FVR unit root tests with the well-known parametric ADF test under the impact of the heavy tailed shocks. Simulations demonstrate that under heavy tailed innovations, the nonparametric FVR tests have desirable size and power properties.

1996 ◽  
Vol 12 (4) ◽  
pp. 724-731 ◽  
Author(s):  
Jon Faust

Said and Dickey (1984,Biometrika71, 599–608) and Phillips and Perron (1988,Biometrika75, 335–346) have derived unit root tests that have asymptotic distributions free of nuisance parameters under very general maintained models. Under models as general as those assumed by these authors, the size of the unit root test procedures will converge to one, not the size under the asymptotic distribution. Solving this problem requires restricting attention to a model that is small, in a topological sense, relative to the original. Sufficient conditions for solving the asymptotic size problem yield some suggestions for improving finite-sample size performance of standard tests.


2013 ◽  
Vol 29 (6) ◽  
pp. 1289-1313 ◽  
Author(s):  
Tomás del Barrio Castro ◽  
Paulo M.M. Rodrigues ◽  
A.M. Robert Taylor

In this paper we investigate the impact of persistent (nonstationary or near nonstationary) cycles on the asymptotic and finite-sample properties of standard unit root tests. Results are presented for the augmented Dickey–Fuller (ADF) normalized bias and t-ratio-based tests (Dickey and Fuller, 1979, Journal of the American Statistical Association 745, 427–431; Said and Dickey, 1984; Biometrika 71, 599–607). the variance ratio unit root test of Breitung (2002, Journal of Econometrics 108, 343–363), and the M class of unit-root tests introduced by Stock (1999, in Engle and White (eds.), A Festschrift in Honour of Clive W.J. Granger) and Perron and Ng (1996, Review of Economic Studies 63, 435–463). We show that although the ADF statistics remain asymptotically pivotal (provided the test regression is properly augmented) in the presence of persistent cycles, this is not the case for the other statistics considered and show numerically that the size properties of the tests based on these statistics are too unreliable to be used in practice. We also show that the t-ratios associated with lags of the dependent variable of order greater than two in the ADF regression are asymptotically normally distributed. This is an important result as it implies that extant sequential methods (see Hall, 1994, Journal of Business & Economic Statistics 17, 461–470; Ng and Perron, 1995, Journal of the American Statistical Association 90, 268–281) used to determine the order of augmentation in the ADF regression remain valid in the presence of persistent cycles.


2017 ◽  
Vol 34 (2) ◽  
pp. 447-476 ◽  
Author(s):  
Tomás del Barrio Castro ◽  
Paulo M.M. Rodrigues ◽  
A.M. Robert Taylor

We extend the ${\cal M}$ class of unit root tests introduced by Stock (1999, Cointegration, Causality and Forecasting. A Festschrift in Honour of Clive W.J. Granger. Oxford University Press), Perron and Ng (1996, Review of Economic Studies 63, 435–463) and Ng and Perron (2001, Econometrica 69, 1519–1554) to the seasonal case, thereby developing semi-parametric alternatives to the regression-based augmented seasonal unit root tests of Hylleberg, Engle, Granger, and Yoo (1990, Journal of Econometrics 44, 215–238). The success of this class of unit root tests to deliver good finite sample size control even in the most problematic (near-cancellation) case where the shocks contain a strong negative moving average component is shown to carry over to the seasonal case as is the superior size/power trade-off offered by these tests relative to other available tests.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Steve Cook

Using numerical simulation, the finite-sample properties of threshold autoregressive (TAR) and momentum-threshold (MTAR) autoregressive-based unit root tests under both deterministic and consistent methods of threshold estimation are examined in the presence of generalised autoregressive conditional heteroskedasticity (GARCH). Previous research is extended by considering both the impact of alternative robust methods of covariance matrix estimation and the behaviour of the secondary tests of asymmetry associated with the TAR and MTAR models. The results obtained reveal many interesting features, in particular the distortionary effects of consistent-threshold estimation. In summary, the findings presented indicate that caution should be exercised when interpreting the results of these frequently employed threshold-based testing methods.


2016 ◽  
Vol 33 (3) ◽  
Author(s):  
Steven Cook

Using local-to-unity detrending, the GLS-based Dickey-Fuller test has been shown to possess higher power than other available unit root tests. As a result, application of this easily implemented test has increased in recent years. In the present study the finite-sample size and power of the GLS-based Dickey-Fuller test is examined in the presence of breaks in innovation variance under the null. In contrast to the original Dickey-Fuller test which has been shown to suffer severe distortion in such circumstances, the GLS-basedtest latter exhibits robustness to all but the most extreme breaks in variance.The results derived show the GLS-based test to be more robust to variance breaks than other modified Dickey-Fuller tests previously considered in the literature.


1996 ◽  
Vol 12 (1) ◽  
pp. 129-153 ◽  
Author(s):  
Miguel A. Herce

In this paper we derive the asymptotic distribution of the least absolute deviations (LAD) estimator of the autoregressive parameter under the unit root hypothesis, when the errors are assumed to have finite variances, and present LAD-based unit root tests, which, under heavy-tailed errors, are expected to be more powerful than tests based on least squares. The limiting distribution of the LAD estimator is that of a functional of a bivariate Brownian motion, similar to those encountered in cointegrating regressions. By appropriately correcting for serial correlation and other distributional parameters, the test statistics introduced here are found to have either conditional or unconditional normal limiting distributions. The results of the paper complement similar ones obtained by Knight (1991, Canadian Journal of Statistics 17, 261-278) for infinite variance errors. A simulation study is conducted to investigate the finite sample properties of our tests.


2014 ◽  
Vol 31 (3) ◽  
pp. 539-559 ◽  
Author(s):  
I. Gaia Becheri ◽  
Feike C. Drost ◽  
Ramon van den Akker

In a Gaussian, heterogeneous, cross-sectionally independent panel with incidental intercepts, Moon, Perron, and Phillips (2007, Journal of Econometrics 141, 416–459) present an asymptotic power envelope yielding an upper bound to the local asymptotic power of unit root tests. In case of homogeneous alternatives this envelope is known to be sharp, but this paper shows that it is not attainable for heterogeneous alternatives. Using limit experiment theory we derive a sharp power envelope. We also demonstrate that, among others, one of the likelihood ratio based tests in Moon et al. (2007, Journal of Econometrics 141, 416–459), a pooled generalized least squares (GLS) based test using the Breitung and Meyer (1994, Applied Economics 25, 353–361) device, and a new test based on the asymptotic structure of the model are all asymptotically UMP (Uniformly Most Powerful). Thus, perhaps somewhat surprisingly, pooled regression-based tests may yield optimal tests in case of heterogeneous alternatives. Although finite-sample powers are comparable, the new test is easy to implement and has superior size properties.


Sign in / Sign up

Export Citation Format

Share Document