scholarly journals Polynomial sequences generated by infinite Hessenberg matrices

2017 ◽  
Vol 5 (1) ◽  
pp. 64-72 ◽  
Author(s):  
Luis Verde-Star

Abstract We show that an infinite lower Hessenberg matrix generates polynomial sequences that correspond to the rows of infinite lower triangular invertible matrices. Orthogonal polynomial sequences are obtained when the Hessenberg matrix is tridiagonal. We study properties of the polynomial sequences and their corresponding matrices which are related to recurrence relations, companion matrices, matrix similarity, construction algorithms, and generating functions. When the Hessenberg matrix is also Toeplitz the polynomial sequences turn out to be of interpolatory type and we obtain additional results. For example, we show that every nonderogative finite square matrix is similar to a unique Toeplitz-Hessenberg matrix.

1988 ◽  
Vol 11 (4) ◽  
pp. 763-767 ◽  
Author(s):  
N. K. Thakare ◽  
M. C. Madhekar

A pair of polynomial sequences{Snμ(x;k)}and{Tmμ(x;k)}whereSnμ(x;k)is of degreeninxkandTmμ(x;k)is of degreeminx, is constructed. It is shown that this pair is biorthogonal with respect to the Szegö-Hermite weight function|x|2μexp(−x2),(μ>−1/2)over the interval(−∞,∞)in the sense that∫−∞∞|x|2μexp(−x2)Snμ(x;k)Tmμ(x;k)dx=0,   ifm≠n                    ≠0,   ifm=nwherem,n=0,1,2,…andkis an odd positive integer.Generating functions, mixed recurrence relations for both these sets are obtained. Fork=1, both the above sets get reduced to the orthogonal polynomials introduced by professor Szegö.


Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 309-320 ◽  
Author(s):  
B.S. El-Desouky ◽  
Nenad Cakic ◽  
F.A. Shiha

In this paper we give a new family of numbers, called ??-Whitney numbers, which gives generalization of many types of Whitney numbers and Stirling numbers. Some basic properties of these numbers such as recurrence relations, explicit formulas and generating functions are given. Finally many interesting special cases are derived.


2010 ◽  
Author(s):  
M. S. Stanković ◽  
B. Danković ◽  
S. Marinković ◽  
P. M. Rajković ◽  
Michail D. Todorov ◽  
...  

1997 ◽  
Vol 20 (4) ◽  
pp. 759-768 ◽  
Author(s):  
A. K. Agarwal ◽  
R. Balasubrananian

In this paper we study thosen-color partitions of Agarwal and Andrews, 1987, in which each pair of parts has weighted difference equal to−2Results obtained in this paper for these partitions include several combinatorial identities, recurrence relations, generating functions, relationships with the divisor function and computer produced tables. By using these partitions an explicit expression for the sum of the divisors of odd integers is given. It is shown how these partitions arise in the study of conjugate and self-conjugaten-color partitions. A combinatorial identity for self-conjugaten-color partitions is also obtained. We conclude by posing several open problems in the last section.


10.37236/1052 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Brad Jackson ◽  
Frank Ruskey

We consider a family of meta-Fibonacci sequences which arise in studying the number of leaves at the largest level in certain infinite sequences of binary trees, restricted compositions of an integer, and binary compact codes. For this family of meta-Fibonacci sequences and two families of related sequences we derive ordinary generating functions and recurrence relations. Included in these families of sequences are several well-known sequences in the Online Encyclopedia of Integer Sequences (OEIS).


Author(s):  
Kunle Adegoke

We study various properties of the polygonal numbers; such as their recurrence relations, fundamental identities, weighted binomial and ordinary sums and the partial sums and generating functions of their powers. A feature of our results is that they are presented naturally in terms of the polygonal numbers themselves and not in terms of arbitrary integers as is the case in most literature.


Author(s):  
Kunle Adegoke

We study various properties of the polygonal numbers; such as their recurrence relations; fundamental identities; weighted binomial and ordinary sums; partial sums and generating functions of their powers; and a continued fraction representation for them. A feature of our results is that they are presented naturally in terms of the polygonal numbers themselves and not in terms of arbitrary integers; unlike what obtains in most literature.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1431
Author(s):  
Junesang Choi ◽  
Recep Şahin ◽  
Oğuz Yağcı ◽  
Dojin Kim

A number of generalized Hurwitz–Lerch zeta functions have been presented and investigated. In this study, by choosing a known extended Hurwitz–Lerch zeta function of two variables, which has been very recently presented, in a systematic way, we propose to establish certain formulas and representations for this extended Hurwitz–Lerch zeta function such as integral representations, generating functions, derivative formulas and recurrence relations. We also point out that the results presented here can be reduced to yield corresponding results for several less generalized Hurwitz–Lerch zeta functions than the extended Hurwitz–Lerch zeta function considered here. For further investigation, among possibly various more generalized Hurwitz–Lerch zeta functions than the one considered here, two more generalized settings are provided.


Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1046 ◽  
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Han Young Kim ◽  
Jongkyum Kwon

Recently, the degenerate λ -Stirling polynomials of the second kind were introduced and investigated for their properties and relations. In this paper, we continue to study the degenerate λ -Stirling polynomials as well as the r-truncated degenerate λ -Stirling polynomials of the second kind which are derived from generating functions and Newton’s formula. We derive recurrence relations and various expressions for them. Regarding applications, we show that both the degenerate λ -Stirling polynomials of the second and the r-truncated degenerate λ -Stirling polynomials of the second kind appear in the expressions of the probability distributions of appropriate random variables.


Sign in / Sign up

Export Citation Format

Share Document