New family of Whitney numbers

Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 309-320 ◽  
Author(s):  
B.S. El-Desouky ◽  
Nenad Cakic ◽  
F.A. Shiha

In this paper we give a new family of numbers, called ??-Whitney numbers, which gives generalization of many types of Whitney numbers and Stirling numbers. Some basic properties of these numbers such as recurrence relations, explicit formulas and generating functions are given. Finally many interesting special cases are derived.

Filomat ◽  
2019 ◽  
Vol 33 (3) ◽  
pp. 931-943 ◽  
Author(s):  
B. El-Desouky ◽  
F.A. Shiha ◽  
Ethar Shokr

In this paper, we define the multiparameter r-Whitney numbers of the first and second kind. The recurrence relations, generating functions , explicit formulas of these numbers and some combinatorial identities are derived. Some relations between these numbers and generalized Stirling numbers of the first and second kind, Lah numbers, C-numbers and harmonic numbers are deduced. Furthermore, some interesting special cases are given. Finally matrix representation for these relations are given.


2018 ◽  
Vol 12 (1) ◽  
pp. 178-191 ◽  
Author(s):  
B.S. El-Desouky ◽  
F.A. Shiha

We define the (q,??)-Whitney numbers which are reduced to the ??-Whitney numbers when q ? 1. Moreover, we obtain several properties of these numbers such as explicit formulas, recurrence relations, generating functions, orthogonality and inverse relations. Finally, we define the ??-Whitney-Lah numbers as a generalization of the r-Whitney-Lah numbers and we introduce their important basic properties.


2021 ◽  
Vol 14 (1) ◽  
pp. 65-81
Author(s):  
Roberto Bagsarsa Corcino ◽  
Jay Ontolan ◽  
Maria Rowena Lobrigas

In this paper, a q-analogue of r-Whitney-Lah numbers, also known as (q,r)-Whitney-Lah number, denoted by $L_{m,r} [n, k]_q$ is defined using the triangular recurrence relation. Several fundamental properties for the q-analogue are established such as vertical and horizontal recurrence relations, horizontal and exponential generating functions. Moreover, an explicit formula for (q, r)-Whitney-Lah number is derived using the concept of q-difference operator, particularly, the q-analogue of Newton’s Interpolation Formula (the umbral version of Taylor series). Furthermore, an explicit formula for the first form (q, r)-Dowling numbers is obtained which is expressed in terms of (q,r)-Whitney-Lah numbers and (q,r)-Whitney numbers of the second kind.


10.37236/2644 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Andrew Vince ◽  
Miklós Bóna

Motivated by the question of how macromolecules assemble,the notion of an assembly tree of a graph is introduced. Given a graph $G$, the paper is concerned with enumerating the number of assembly trees of $G$, a problem that applies to the macromolecular assembly problem. Explicit formulas or generating functions are provided for the number of assembly trees of several families of graphs, in particular for what we call $(H,\phi)$-graphs.  In some natural special cases, we use a powerful recent result of Zeilberger and Apagodu to provide recurrence relations for the diagonal of the relevant multivariate generating functions, and we use a result of Wimp and Zeilberger to find very precise asymptotic formulae for the coefficients of these diagonals.  Future directions for reseach, as well as open questions, are suggested.


Author(s):  
Kunle Adegoke

We study various properties of the polygonal numbers; such as their recurrence relations, fundamental identities, weighted binomial and ordinary sums and the partial sums and generating functions of their powers. A feature of our results is that they are presented naturally in terms of the polygonal numbers themselves and not in terms of arbitrary integers as is the case in most literature.


Author(s):  
Kunle Adegoke

We study various properties of the polygonal numbers; such as their recurrence relations; fundamental identities; weighted binomial and ordinary sums; partial sums and generating functions of their powers; and a continued fraction representation for them. A feature of our results is that they are presented naturally in terms of the polygonal numbers themselves and not in terms of arbitrary integers; unlike what obtains in most literature.


Author(s):  
Waseem Khan ◽  
Idrees Ahmad Khan ◽  
Mehmet Acikgoz ◽  
Ugur Duran

In this paper, a new class of q-Hermite based Frobenius type Eulerian polynomials is introduced by means of generating function and series representation. Several fundamental formulas and recurrence relations for these polynomials are derived via different generating methods. Furthermore, diverse correlations including the q-Apostol-Bernoulli polynomials, the q-Apostol-Euler poynoomials, the q-Apostol-Genocchi polynomials and the q-Stirling numbers of the second kind are also established by means of the their generating functions.


Author(s):  
Feng Qi ◽  
Bai-Ni Guo

In the paper, the authors consider the generating functions of the Hermite polynomials and their squares, present explicit formulas for higher order derivatives of the generating functions of the Hermite polynomials and their squares, which can be viewed as ordinary differential equations or derivative polynomials, find differential equations that the generating functions of the Hermite polynomials and their squares satisfy, and derive explicit formulas and recurrence relations for the Hermite polynomials and their squares.


Filomat ◽  
2018 ◽  
Vol 32 (20) ◽  
pp. 6879-6891
Author(s):  
Irem Kucukoglu ◽  
Yilmaz Simsek

The first aim of this paper is to give identities and relations for a new family of the combinatorial numbers and the Apostol-Euler type numbers of the second kind, the Stirling numbers, the Apostol-Bernoulli type numbers, the Bell numbers and the numbers of the Lyndon words by using some techniques including generating functions, functional equations and inversion formulas. The second aim is to derive some derivative formulas and combinatorial sums by applying derivative operators including the Caputo fractional derivative operators. Moreover, we give a recurrence relation for the Apostol-Euler type numbers of the second kind. By using this recurrence relation, we construct a computation algorithm for these numbers. In addition, we derive some novel formulas including the Stirling numbers and other special numbers. Finally, we also some remarks, comments and observations related to our results.


2019 ◽  
Vol 15 (01) ◽  
pp. 67-84 ◽  
Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz

In this paper, we primarily consider a generalization of the fermionic [Formula: see text]-adic [Formula: see text]-integral on [Formula: see text] including the parameters [Formula: see text] and [Formula: see text] and investigate its some basic properties. By means of the foregoing integral, we introduce two generalizations of [Formula: see text]-Changhee polynomials and numbers as [Formula: see text]-Changhee polynomials and numbers with weight [Formula: see text] and [Formula: see text]-Changhee polynomials and numbers of second kind with weight [Formula: see text]. For the mentioned polynomials, we obtain new and interesting relationships and identities including symmetric relation, recurrence relations and correlations associated with the weighted [Formula: see text]-Euler polynomials, [Formula: see text]-Stirling numbers of the second kind and Stirling numbers of first and second kinds. Then, we discover multifarious relationships among the two types of weighted [Formula: see text]-Changhee polynomials and [Formula: see text]-adic gamma function. Also, we compute the weighted fermionic [Formula: see text]-adic [Formula: see text]-integral of the derivative of [Formula: see text]-adic gamma function. Moreover, we give a novel representation for the [Formula: see text]-adic Euler constant by means of the weighted [Formula: see text]-Changhee polynomials and numbers. We finally provide a quirky explicit formula for [Formula: see text]-adic Euler constant.


Sign in / Sign up

Export Citation Format

Share Document