matrix similarity
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 10)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhihao Ma ◽  
Zhufang Kuang ◽  
Lei Deng

Abstract Background The existing studies show that circRNAs can be used as a biomarker of diseases and play a prominent role in the treatment and diagnosis of diseases. However, the relationships between the vast majority of circRNAs and diseases are still unclear, and more experiments are needed to study the mechanism of circRNAs. Nowadays, some scholars use the attributes between circRNAs and diseases to study and predict their associations. Nonetheless, most of the existing experimental methods use less information about the attributes of circRNAs, which has a certain impact on the accuracy of the final prediction results. On the other hand, some scholars also apply experimental methods to predict the associations between circRNAs and diseases. But such methods are usually expensive and time-consuming. Based on the above shortcomings, follow-up research is needed to propose a more efficient calculation-based method to predict the associations between circRNAs and diseases. Results In this study, a novel algorithm (method) is proposed, which is based on the Graph Convolutional Network (GCN) constructed with Random Walk with Restart (RWR) and Principal Component Analysis (PCA) to predict the associations between circRNAs and diseases (CRPGCN). In the construction of CRPGCN, the RWR algorithm is used to improve the similarity associations of the computed nodes with their neighbours. After that, the PCA method is used to dimensionality reduction and extract features, it makes the connection between circRNAs with higher similarity and diseases closer. Finally, The GCN algorithm is used to learn the features between circRNAs and diseases and calculate the final similarity scores, and the learning datas are constructed from the adjacency matrix, similarity matrix and feature matrix as a heterogeneous adjacency matrix and a heterogeneous feature matrix. Conclusions After 2-fold cross-validation, 5-fold cross-validation and 10-fold cross-validation, the area under the ROC curve of the CRPGCN is 0.9490, 0.9720 and 0.9722, respectively. The CRPGCN method has a valuable effect in predict the associations between circRNAs and diseases.


Author(s):  
Jörn Diedrichsen ◽  
Eva Berlot ◽  
Marieke Mur ◽  
Heiko H. Schütt ◽  
Mahdiyar Shahbazi ◽  
...  

2021 ◽  
Author(s):  
Youngsup Shin ◽  
Kyoungmin Kim ◽  
Jemin Justin Lee ◽  
Kyungho Lee
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiaokang Han ◽  
Wenzhou Yan ◽  
Mei Lu

Industry is an important pillar of the national economy, and industrial projects are the most complex and difficult to manage and control in the construction industry; thus, the resource scheduling control of industrial projects is one of the core issues for industrial construction projects. The performance rate of the contract time periods of previous industrial construction projects has been very low. In scheduling control based on case-based reasoning (CBR), the goal is to implement preventive measures by referring to existing scheduling control cases and control the scheduling of resources through reasoning on emergency measures to prevent scheduling control deviations. In this paper, the rough set approach is used to represent the case feature information in a case reasoning model for industrial project scheduling control, attribute reduction is used to determine the weights of the feature attributes in the rough set representation, and the similarity between cases is calculated for case retrieval. The accuracy of the rough-set-based similarity calculation is verified through matrix similarity calculations and a visual analysis of the all closeness centrality and weighted all degree centrality of the corresponding complex network; thus, similar cases of industrial project scheduling control are identified. To verify the applicability and effectiveness of the proposed methodology, a typical coal chemical general contract project case is carried out. The rough set comprehensive similarity results were 0.733, 0.621, 0.536, 0.614, 0.559, 0.950, 0.708, 0.546, 0.733, 0.664, 0.526, and 0.743, and the matrix similarity results were 0.417, 0.583, 0.417, 0.417, 0.417, 0.833, 0.417, 0.500, 0.417, 0.500, 0.333, and 0.500. The results showed that the case retrieval accuracy of traditional matrix similarity is not as high as the rough set comprehensive similarity, so X 6 is the most similar case to the target case Y. Case retrieval results indicate that the proposed methodology can provide a good similar case selection strategy with project managers, and the final required preventive measures for the target case can be found. Based on the identified similar cases, preventive measures for scheduling control are formulated to effectively prevent scheduling deviations of industrial projects.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5426
Author(s):  
Gangui Yan ◽  
Dan Wang ◽  
Qi Jia ◽  
Wenbo Hu

The order of the detailed model of doubly-fed induction generator (DFIG) wind farms are too high and the simulation is difficult. Most of the existing research has used a single-machine equivalent model and clustering aggregation model for equivalence and few papers have explored the principles and equivalent conditions of the single-machine equivalent model under sub-synchronous resonance (SSR). Due to this reason, this paper equates DFIG wind farms connected with series compensated transmission network to two separate units based on the principle of matrix similarity transformation and the mathematical model and physical model of each unit has been studied. Then, the DFIG wind farm equivalent model’s validity is analyzed in number difference and collecting line difference based on linearization analysis. Finally, the system model is built in EMTDC/PSCAD, the damping analysis method is used to test the equivalent model’s validity and further reveal the mechanism of the system’s unstable operation. The results show that: the equivalent model can effectively reduce the system dimension and accurately reflect the dominant oscillation characteristics of DFIG wind farm under SSR; when SSR occurs, the damping coefficient of DFIG wind farm is negative under the oscillation frequency.


Author(s):  
Mingwen Shao ◽  
Junhui Dai ◽  
Jiandong Kuang ◽  
Deyu Meng

2020 ◽  
Author(s):  
Thomas T. Liu ◽  
Bochao Li ◽  
Conan Chen ◽  
Brice Fernandez ◽  
Baolian Yang ◽  
...  

AbstractPurposeIn multi-echo fMRI (ME-fMRI), various weighting schemes have been proposed for the combination of the data across echoes. Here we introduce a framework that facilitates a deeper understanding of the weight dependence of temporal SNR measures in ME-fMRI.Theory and MethodsWe examine two metrics that have been used to characterize ME-fMRI performance: temporal SNR (tSNR) and multi-echo temporal (metSNR). Both metrics can be described using the generalized Rayleigh quotient (GRQ) and are predicted to be relatively insensitive to the weights when there is a high degree of similarity between a metric-specific matrix in the GRQ numerator and a metricindependent covariance matrix in the GRQ denominator. The application of the GRQ framework to experimental data is demonstrated using a resting-state fMRI dataset acquired with a multi-echo multi-band EPI sequence.ResultsIn the example dataset, similarities between the covariance matrix and the metSNR and tSNR numerator matrices are highest in grey matter (GM) and cerebrospinal fluid (CSF) voxels, respectively. For representative GM and CSF voxels that exhibit high matrix similarity values, the metSNR and tSNR values, respectively, are both within 4% of their optimal values across a range of weighting schemes. However, there is a fundamental tradeoff, with a high degree of weight sensitivity in the tSNR and metSNR metrics for the representative GM and CSF voxels, respectively. Geometric insight into the observed weight dependencies is provided through a graphical interpretation of the GRQ.ConclusionA GRQ framework can provide insight into the factors that determine the weight sensitivity of tSNR and metSNR measures in ME-fMRI.


2019 ◽  
Vol 10 (1) ◽  
pp. 315
Author(s):  
Yunan Chen ◽  
Ruifang Yang ◽  
Nanjing Zhao ◽  
Wei Zhu ◽  
Yao Huang ◽  
...  

Developing fast and accurate fluorescence detection technology of oil spill is significant for quantitative analysis in unexpected oil spill events. As the oil sample concentration increases, the fluorescence spectrum produces red-shift behavior, which seriously affects the quantitative detection of concentration. In this work, a three-dimensional concentration-emission matrix (CEM) was constructed by using a series of emission spectra with different levels of concentration at the excitation wavelength of 266 nm. The database is the interpolated CEM of six samples using bicubic interpolation in the concentration dimension. With matrix similarity matching, the database was used to achieve quantification of the concentration of oil samples. The recovery rates of prediction for test samples and weathering samples of six oil samples were between 86.8% and 116.11%, with relative errors of predictions ranging from 2.09% to 15.2%. The results show that this method can provide accurate quantitative determination of the concentration of different oil samples.


Sign in / Sign up

Export Citation Format

Share Document