Radial Distribution Function of Liquid Sodium

1982 ◽  
Vol 37 (6) ◽  
pp. 594-597
Author(s):  
M. Rami Reddy

Abstract The radial distribution function of liquid sodium has been studied by considering the integral equation Perturbation Theory of Madden and Fitts for the reference part and the optimised cluster theory for the attractive part of the pair potential. Calculations were carried out for the long range oscillatory potential of Schiff. The calculated results are compared with the molecular dynamics calculations HTA, OCT and with experiment. The agreement was found to be satisfactory.

2008 ◽  
Vol 47-50 ◽  
pp. 375-378 ◽  
Author(s):  
Zheng Han Hong ◽  
Shun Fa Hwang ◽  
Te Hua Fang

The mixing situation of Co atoms implanting onto Cu(001) substrate is investigated with regard to incident energy and substrate temperature by molecular dynamics. The results indicate that higher substrate temperature and/or incident energy will result in higher intermixing between the incident atoms and the substrate atoms. Furthermore, the value of the first peak of the radial distribution function (RDF) becomes lower and wider for the Co-Cu system as the substrate temperature and/or incident energy are increased.


1975 ◽  
Vol 53 (1) ◽  
pp. 5-12 ◽  
Author(s):  
W. R. Smith ◽  
D. Henderson ◽  
J. A. Barker

Accurate calculations of the second order term in the free energy and the first order term in the radial distribution function in the Barker–Henderson (BH) perturbation theory are presented for the triangular well potential. The BH theory is found to be fully satisfactory for this system. Thus, the conclusions of Card and Walkley regarding the accuracy of the BH theory are erroneous.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1080
Author(s):  
Jinxia Zhang ◽  
Chao Yang ◽  
Fusheng Niu ◽  
Shuling Gao ◽  
Jiajing Dong

Molecular dynamics of the interaction between four metal oxides (ZnO, Fe2O3, Al2O3, and CaO) present in zinc-bearing dust sludge and choline chloride (ChCl)-malonic acid (MA)(1:2) was studied in this work using Materials Studio software. The interaction mechanism was revealed by analyzing the interaction energy and radial distribution function from the perspective of quantum mechanics, and the simulation results were verified by single factor leaching experiments. The calculation results show that the complete cleavage surface of the four metal oxides is the (001) surface, and ChCl-2MA forms a stable structure with multiple intermolecular hydrogen bonds centered on the chlorine atom. The dynamic simulation of the interaction model shows that strength of interaction between ChCl-2MA and the four metal oxides follows the order: ZnO > Fe2O3 > Al2O3 > CaO. ChCl-2MA mainly interacts with ZnO by chemical adsorption, while ChCl-2MA mainly interacts with Fe2O3, Al2O3, and CaO by physical adsorption. The radial distribution function shows that Cl in ChCl-2MA and C=O in MA form chemical bonds with Zn in ZnO, and the choline cation (Ch+) forms C-H···O with ZnO. Among these bonds, the Cl-Zn bond energy is stronger. During the interaction between ChCl-2MA and Fe2O3 and Al2O3, O-H···O and C-H···O are formed and interact with CaO by van der Waals force. Single factor leaching experiments show that, under the same leaching conditions, the leaching rate of ZnO by ChCl-2MA is greater than 90%, while the leaching rate of Fe2O3, Al2O3, and CaO is about 10%. These results indicate good selectivity of ChCl-2MA for ZnO in the zinc-bearing dust sludge. The above conclusions have important theoretical significance and provide an in-depth understanding of the leaching mechanisms of zinc-bearing dust sludge in deep eutectic solvents.


1971 ◽  
Vol 22 (6) ◽  
pp. 1089-1105 ◽  
Author(s):  
K.E. Gubbins ◽  
W.R. Smith ◽  
M.K. Tham ◽  
E.W. Tiepel

Sign in / Sign up

Export Citation Format

Share Document