Differential Thermal Analysis and Dielectric Studies on Neopentanol under Pressure

1992 ◽  
Vol 47 (11) ◽  
pp. 1127-1134 ◽  
Author(s):  
H. G. Kreul ◽  
R. Waldinger ◽  
A. Würflinger

Abstract Differential thermal analysis (DTA) and dielectric measurements have been performed on 2,2-dimethyl- 1-propanol (neopentanol) up to 200 MPa. Neopentanol exhibits at least one orientationally disordered (ODIC) phase (solid I) that transforms at lower temperatures to a non-plastic phase (solid II). There is evidence of a further ODIC phase denoted as solid I'. The pressure dependence of the phase transitions and the dielectric behaviour up to frequencies of 13 MHz are described. Activation enthalpies and volumes are derived from the dielectric relaxation time and compared with results for other alcohols

1995 ◽  
Vol 50 (4-5) ◽  
pp. 502-504 ◽  
Author(s):  
D. Büsing ◽  
M. Jenau ◽  
J. Reuter ◽  
A. Würflinger ◽  
J. Li. Tamarit

Abstract Differential thermal analysis and dielectric studies under pressures up to 300 MPa and temperatures of about 200 to 350 K have been performed on 2-methyl-2-nitro-propane (TBN). TBN displays an orientationally disordered phase (ODIC), solid I, and two non-plastic phases, solids II and III. The coexistence region of the plastic phase I increases with increasing pressure, whereas the low-temperature phase II apparently vanishes at a triple point I, II, III, above 300 MPa. The static permittivity increases on freezing, characterizing the solid I as an ODIC phase. In the frame of the Kirkwood-Onsager-Fröhlich theory the g-factor is about unity, discounting specific dielectric correlations. The dielectric behaviour of TBN is similar to previously studied related compounds, such as 2-chloro-2-methyl-propane or 2-brome- 2-methyl-propane


1983 ◽  
Vol 26 (2) ◽  
pp. 77-84 ◽  
Author(s):  
S.M. Khameshara ◽  
M.S. Kavadia ◽  
M.S. Lodha ◽  
D.C. Mathur ◽  
V.K. Vaidya

2014 ◽  
Vol 458 (1) ◽  
pp. 56-63 ◽  
Author(s):  
Thanapong Sareein ◽  
Muanjai Unruan ◽  
Athipong Ngamjarurojana ◽  
Supon Ananta ◽  
Rattikorn Yimnirun

2019 ◽  
Vol 33 (28) ◽  
pp. 1950339 ◽  
Author(s):  
Y. I. Aliyev ◽  
P. R. Khalilzade ◽  
Y. G. Asadov ◽  
T. M. Ilyasli ◽  
F. M. Mammadov ◽  
...  

AgCu[Formula: see text]Fe[Formula: see text]S compounds were synthesized by partial Cu[Formula: see text][Formula: see text][Formula: see text]Fe replacement in the AgCuS crystal at a concentration range of 0[Formula: see text][Formula: see text][Formula: see text]x[Formula: see text][Formula: see text][Formula: see text]0.03. In the differential thermal analysis spectrum obtained at a temperature range of 300 K[Formula: see text][Formula: see text][Formula: see text]T[Formula: see text][Formula: see text][Formula: see text]1300 K, endoeffect corresponding to the structural phase transition in the AgCuS compound was observed at the temperature T[Formula: see text]=[Formula: see text]938 K. It has been determined that this result is also observed in the AgCu[Formula: see text]Fe[Formula: see text]S compound obtained by partial replacement of Cu atoms by Fe atoms. However, in the compound of AgCu[Formula: see text]Fe[Formula: see text]S this effect was observed at higher temperatures. The thermal capacities and enthalpies of phase transitions were calculated for the given compounds.


Sign in / Sign up

Export Citation Format

Share Document