Rayleigh-Taylor Instability of Viscous-Viscoelastic Fluids in Presence of Suspended Particles Through Porous Medium

1996 ◽  
Vol 51 (1-2) ◽  
pp. 17-22 ◽  
Author(s):  
Pardeep Kumar

Abstract The Rayleigh-Taylor instability of a Newtonian viscous fluid overlying an Oldroydian viscoelastic fluid containing suspended particles in a porous medium is considered. As in both Newtonian viscous-viscous fluids the system is stable in the potentially stable case and unstable in the potentially unstable case, this holds for the present problem also. The effects of a variable horizontal magnetic field and a uniform rotation are also considered. The presence of magnetic field stabilizes a certain wave-number band, whereas the system is unstable for all wave-numbers in the absence of the magnetic field for the potentially unstable configuration. However, the system is stable in the potentially stable case and unstable in the potentially unstable case for highly viscous fluids in the presence of a uniform rotation.

2007 ◽  
Vol 2007 ◽  
pp. 1-6 ◽  
Author(s):  
Pardeep Kumar ◽  
Mahinder Singh

The Rayleigh‐Taylor instability of a Newtonian viscous fluid overlying an Oldroydian viscoelastic fluid containing suspended particles is considered. As in both Newtonian viscous-viscous fluids, the system is stable in the potentially stable case and unstable in the potentially unstable case, this holds for the present problem also. The effect of a variable horizontal magnetic field is also considered. The presence of magnetic field stabilizes a certain wavenumber band, whereas the system is unstable for all wavenumbers in the absence of the magnetic field for the potentially unstable arrangement.


1992 ◽  
Vol 47 (12) ◽  
pp. 1227-1231
Author(s):  
R. C. Sharma ◽  

Abstract The Rayleigh-Taylor instability of a partially ionized plasma in a porous medium is considered in the presence of a variable magnetic field perpendicular to gravity. The cases of two uniform partially ionized plasmas separated by a horizontal boundary and exponentially varying density, viscosity, magnetic field and neutral particle number density are considered. In each case, the magnetic field succeeds in stabilizing waves in a certain wave-number range which were unstable in the absence of the magnetic field, whereas the system is found to be stable for potentially stable configuration/stable stratifications. The growth rates both increase (for certain wave numbers) and decrease (for different wave numbers) with the increase in kinematic viscosity, medium permeability and collisional frequency. The medium permeability and collisions do not have any qualitative effect on the nature of stability or instability.


2015 ◽  
Vol 20 (2) ◽  
pp. 407-416
Author(s):  
M. Singh ◽  
C.B. Mehta

Abstract Rayleigh-Taylor instability of two superposed Walters’ B has elastico-viscous fluids in a uniform magnetic field through a porous medium with different permeability been studied to include the suspended (dust) particles effect. Using normal mode technique a dispersion relation has been derived. The stability analysis has been carried out. The magnetic field stabilizes the unstable configuration for the wave number band K > K* in which the system is unstable in the absence of the magnetic field. It is also found that for a potential stable arrangement for Walters B’ elastico-viscous fluids of different permeabilities in the presence of suspended particles through a porous medium the system is stable, whereas in the potentially unstable case instability of the system occurs.


1968 ◽  
Vol 21 (6) ◽  
pp. 923 ◽  
Author(s):  
RC Sharma ◽  
KM Srivastava

A general equation studying the combined effect of horizontal and vertical magnetic fields on the stability of two superposed fluids has been obtained. The unstable and stable cases at the interface (z = 0) between two uniform fluids, with both the possibilities of real and complex n, have been. separately dealt with. Some new results are obtained. In the unstable case with real n, the perturbations are damped or unstable according as 2(k'-k~L2)_(<X2-<Xl)k is> or < 0 under the physical situation (35). In the stable case, the perturbations are stable or unstable according as 2(k2_k~L2)+(<Xl-<X2)k is > or < 0 under the same physical situation (35). The perturbations become unstable if HIlIH 1- (= L) is large. Both the cases are also discussed with imaginary n.


Author(s):  
Pushap Lata Sharma ◽  
Sumit Gupta

This paper deals with the convection of micropolar fluids heated and soluted from below in the presence of suspended particles (fine dust) and uniform vertical rotation and uniform vertical magnetic field in a porous medium. Using the Boussinesq approximation, the linearized stability theory and normal mode analysis, the exact solutions are obtained for the case of two free boundaries. It is found that the presence of the suspended particles number density, the rotation parameter, stable solute, magnetic field intensity and medium permeability bring oscillatory modes which were non–existent in their absence. It is found that the presence of coupling between thermal and micropolar effects, rotation parameter, solute parameter and suspended particles may introduce overstability in the system. Graphs have been plotted by giving numerical values to the parameters accounting for rotation parameter , magnetic field solute parameter, the dynamic microrotation viscosity and coefficient of angular viscosity to depict the stability characteristics, for both the cases of stationary convection and overstability. It is found that Rayleigh number for the case of overstability and stationary convection increases with increase in rotation parameter, as well as with magnetic field intensity, solute parameter and decreases with increase in micropolar coefficients and medium permeability, for a fixed wave number, implying thereby the stabilizing effect of rotation parameter, magnetic field intensity ,solute parameter and destabilizing effect of micropolar coefficients and medium permeability on the thermosolutal convection of micropolar fluids.


1984 ◽  
Vol 39 (10) ◽  
pp. 939-944 ◽  
Author(s):  
R. K. Chhajlani ◽  
R. K. Sanghvi ◽  
P. Purohit

Abstract The hydromagnetric Rayleigh-Taylor instability of a composite medium has been studied in the presence of suspended particles for an exponentially varying density distribution. The prevalent horizontal magnetic field and viscosity of the medium are assumed to be variable. The dispersion relation is derived for such a medium. It is found that the stability criterion is independent of both viscosity and suspended particles. The system can be stabilized for an appropriate value of the magnetic field. It is found that the suspended particles can suppress as well as enhance the growth rate of the instability in certain regions. The growth rates are obtained for a viscid medium with the inclusion of suspended particles and without it. It has been shown analytically that the growth rate is modified by the inclusion of the relaxation frequency parameter of the suspended particles.


Sign in / Sign up

Export Citation Format

Share Document