scholarly journals Electron Paramagnetic Resonance and DTA Investigation of Cr3+ in Tris(guanidinium) Hexafluoroaluminate Single Crystals

1998 ◽  
Vol 53 (5) ◽  
pp. 245-250
Author(s):  
T. Lakshmi Kasturi ◽  
V. G. Krishnan

Abstract Electron Paramagnetic Resonance (EPR) studies of Cr 3+ in single crystals of tris(guanidinium) hexafluoroaluminate, [C(NH2)3]3 AlF6 , have been carried out in the X-band region. A temperature dependent study of the zero-field splitting parameter D in the range 77-398 K shows the presence of a phase transition, which is supported by Differential Thermal Analysis. In addition, 19F superhyperfine struc-ture has been observed in the 9.3% naturally abundant 53Cr isotope hyperfine structure. D shows a large decrease with increasing temperature. The phase transition brings about a chemical inequivalence in the two chemically equivalent but magnetically inequivalent room temperature (CrF6)3- species. Compar-ison is made with the alums AlCl3 • 6H20, as well as other guanidinium aluminum salts.

1992 ◽  
Vol 262 ◽  
Author(s):  
W. Gehlhoff ◽  
U. Rehse

ABSTRACTFor the first time the acceptor state of iron-boron pairs the occurence of which are suggested by electrical measurements and theoretical considerations is directly proved by EPR measurements. The corresponding EPR spectrum is observed upon suitable illumination of samples which have been co-doped with boron and iron. It shows trigonal symmetry, and the fine-structure pattern can be described with the spin S = l, the g-values gi ∼ 2.1345±0.0001, gi = 2.1345±0.0004 and the zero-field splitting parameter |D| = (1.418±0.001) cm−1.


1986 ◽  
Vol 41 (4) ◽  
pp. 619-622 ◽  
Author(s):  
S. Remme ◽  
G. Lehmann ◽  
K. Recker ◽  
F. Wallrafen

X-band EPR measurements of Ni-doped BaZnF4 crystals revealed presence of three centers. Well-resolved hyperfine structure from 19F nuclei at suitable orientations allowed assignment of the most intense spectrum to single ions on Ba sites. The occupation of Zn sites is considerably lower. The third spectrum is assigned to pairs of Ni2+ ions on adjacent Ba sites. Attempts to correlate the zero-field splitting (ZFS) patterns of the single ion spectra with the distortions of the first coordination spheres of Ba and Zn resp. with a single intrinsic ZFS parameter for both bridging and nonbridging ligands were equally unsuccessful as in the case of Mn2+.


2021 ◽  
Vol 23 (36) ◽  
pp. 20268-20274
Author(s):  
Jérôme Robert ◽  
Philippe Turek ◽  
Matthieu Bailleul ◽  
Athanassios K. Boudalis

A new broadband EPR spectrometer capable of measuring in frequency- and field-sweep modes is described and its functionality is demonstrated on a ferromagnetic Cu3II triangle demonstrating a moderate zero-field splitting of its quartet ground state.


1989 ◽  
Vol 163 ◽  
Author(s):  
P. Emanuelsson ◽  
W. Gehlhoff ◽  
P. Omling ◽  
H. G. Grimmeiss

AbstractThree different Electron Paramagnetic Resonance (EPR) signals, one trigonal and two orthorhombic, which originates from iron-indium pairs in silicon are investigated. It is shown that the two orthorhombic spectra can be explained as transitions within the two doublets of a S=3/2 system with a large zero-field splitting. The temperature dependence of-the intensities reveals that the newly discovered spectrum corresponds to the lower doublet and that the zero-field splitting is 9.8 ± 2.0 cm-1.


1992 ◽  
Vol 47 (7-8) ◽  
pp. 849-856 ◽  
Author(s):  
T. Böttjer ◽  
G. Lehmann ◽  
M. Stockhausen

Abstract The cubic (high temperature) phase of some langbeinites, A+2 B22+(SO4)3 with 11 different combinations of A and B type cations, doped with Mn2+, is investigated by EPR. Powder or single crystal spectra are measured at X-band. They indicate centers of axial symmetry in all cases. In 6 of the langbeinites two centers are found which differ considerably in intensity. Both centers are substitutional defects (Mn in the crystallographically nonequivalent divalent B ion sites). For the more intense one the zero field splitting parameter is proved to be negative in all cases. That center is assigned to the more spacious site which, depending on the cation size, allows for local relaxation. It is shown by comparison with predictions of the superposition model that relaxation appears to be effective


Sign in / Sign up

Export Citation Format

Share Document