An Improved Modified Extended tanh-Function Method

2006 ◽  
Vol 61 (3-4) ◽  
pp. 103-115 ◽  
Author(s):  
Zonghang Yang ◽  
Benny Y. C. Hon

In this paper we further improve the modified extended tanh-function method to obtain new exact solutions for nonlinear partial differential equations. Numerical applications of the proposed method are verified by solving the improved Boussinesq equation and the system of variant Boussinesq equations. The new exact solutions for these equations include Jacobi elliptic doubly periodic type,Weierstrass elliptic doubly periodic type, triangular type and solitary wave solutions

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Reza Abazari ◽  
Adem Kılıçman

This paper presents the general case study of previous works on generalized Boussinesq equations, (Abazari, 2011) and (Kılıcman and Abazari, 2012), that focuses on the application ofG′/G-expansion method with the aid of Maple to construct more general exact solutions for the coupled Boussinesq equations. In this work, the mentioned method is applied to construct more general exact solutions of Boussinesq equation and improved Boussinesq equation, which the French scientistJoseph Valentin Boussinesq(1842–1929) described in the 1870s model equations for the propagation of long waves on the surface of water with small amplitude. Our work is motivated by the fact that theG′/G-expansion method provides not only more general forms of solutions but also periodic, solitary waves and rational solutions. The method appears to be easier and faster by means of a symbolic computation.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Jae-Myoung Kim ◽  
Changbum Chun

Based on the characteristics of the truncated Painlevé expansion method and the Exp-function method, new generalized solitary wave solutions are constructed for the KdV-Burgers-Kuramoto equation, which cannot be directly constructed from the Exp-function method. This work highlights the power of the Exp-function method in providing generalized solitary wave solutions of different physical structures.


2006 ◽  
Vol 61 (1-2) ◽  
pp. 1-6 ◽  
Author(s):  
Zonghang Yang

Nonlinear partial differential equations are widely used to describe complex phenomena in various fields of science, for example the Korteweg-de Vries-Kuramoto-Sivashinsky equation (KdV-KS equation) and the Ablowitz-Kaup-Newell-Segur shallow water wave equation (AKNS-SWW equation). To our knowledge the exact solutions for the first equation were still not obtained and the obtained exact solutions for the second were just N-soliton solutions. In this paper we present kinds of new exact solutions by using the extended tanh-function method.


2021 ◽  
pp. 2150391
Author(s):  
Ghazala Akram ◽  
Naila Sajid

In this article, three mathematical techniques have been operationalized to discover novel solitary wave solutions of (2+1)-dimensional Maccari system, which also known as soliton equation. This model equation is usually of applicative relevance in hydrodynamics, nonlinear optics and plasma physics. The [Formula: see text] function, the hyperbolic function and the [Formula: see text]-expansion techniques are used to obtain the novel exact solutions of the (2+1)-dimensional Maccari system (arising in nonlinear optics and in plasma physics). Many novel solutions such as periodic wave solutions by [Formula: see text] function method, singular, combined-singular and periodic solutions by hyperbolic function method, hyperbolic, rational and trigonometric solutions by [Formula: see text]-expansion method are obtained. The exact solutions are shown through 3D graphics which present the movement of the obtained solutions.


1997 ◽  
Vol 52 (4) ◽  
pp. 335-336
Author(s):  
Yi-Tian Gao ◽  
Bo Tian

Abstract We extend the generalized tan h method to the variant Boussinesq equations and obtain certain solitary-wave and new exact solutions.


2015 ◽  
Vol 70 (9) ◽  
pp. 775-779 ◽  
Author(s):  
Elsayed M.E. Zayed ◽  
Abdul-Ghani Al-Nowehy

AbstractIn this article, the multiple exp-function method and the linear superposition principle are employed for constructing the exact solutions and the solitary wave solutions for the (2+1)-dimensional Calogero–Bogoyavlenskii–Schiff (CBS) equation. With help of Maple and by using the multiple exp-method, we can get exact explicit one-wave, two-wave, and three-wave solutions, which include one-soliton-, two-soliton-, and three-soliton-type solutions. Furthermore, we apply the linear superposition principle to find n-wave solutions of the CBS equation. Two cases with specific values of the involved parameters are plotted for each two-wave and three-wave solutions.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yongan Xie ◽  
Shengqiang Tang

We study a class of high dispersive cubic-quintic nonlinear Schrödinger equations, which describes the propagation of femtosecond light pulses in a medium that exhibits a parabolic nonlinearity law. Applying bifurcation theory of dynamical systems and the Fan sub-equations method, more types of exact solutions, particularly solitary wave solutions, are obtained for the first time.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2017
Author(s):  
Sadullah Bulut ◽  
Mesut Karabacak ◽  
Hijaz Ahmad ◽  
Sameh Askar

In this study, first, fractional derivative definitions in the literature are examined and their disadvantages are explained in detail. Then, it seems appropriate to apply the (G′G)-expansion method under Atangana’s definition of β-conformable fractional derivative to obtain the exact solutions of the space–time fractional differential equations, which have attracted the attention of many researchers recently. The method is applied to different versions of (n+1)-dimensional Kadomtsev–Petviashvili equations and new exact solutions of these equations depending on the β parameter are acquired. If the parameter values in the new solutions obtained are selected appropriately, 2D and 3D graphs are plotted. Thus, the decay and symmetry properties of solitary wave solutions in a nonlocal shallow water wave model are investigated. It is also shown that all such solitary wave solutions are symmetrical on both sides of the apex. In addition, a close relationship is established between symmetric and propagated wave solutions.


Sign in / Sign up

Export Citation Format

Share Document