Taylor-Couette Flow of an Oldroyd-B Fluid in an Annulus Due to a Time-Dependent Couple

2011 ◽  
Vol 66 (1-2) ◽  
pp. 40-46 ◽  
Author(s):  
Corina Fetecau ◽  
Muhammad Imran ◽  
Constantin Fetecau

Taylor-Couette flow in an annulus due to a time-dependent torque suddenly applied to one of the cylinders is studied by means of finite Hankel transforms. The exact solutions, presented under series form in terms of usual Bessel functions, satisfy both the governing equations and all imposed initial and boundary conditions. They can easily be reduced to give similar solutions for Maxwell, second grade, and Newtonian fluids performing the same motion. Finally, some characteristics of the motion, as well as the influence of the material parameters on the behaviour of the fluid, are emphasized by graphical illustrations.

2010 ◽  
Vol 02 (03) ◽  
pp. 543-556 ◽  
Author(s):  
D. VIERU ◽  
I. SIDDIQUE

The velocity field, the longitudinal and the normal tensions corresponding to the axial flow of an Oldroyd-B fluid due to an infinite circular cylinder subject to a longitudinal time-dependent stress are determined by means of the Laplace and finite Hankel transforms. The similar solutions for Maxwell, second grade or Newtonian fluids have been obtained as particular cases of the solutions for Oldroyd-B fluids. Finally, by using dimensionless variables, some characteristics of the motion as well as the influence of the material parameters on the behavior of fluid are shown by graphical illustrations.


2002 ◽  
Vol 462 ◽  
pp. 111-132 ◽  
Author(s):  
U. A. AL-MUBAIYEDH ◽  
R. SURESHKUMAR ◽  
B. KHOMAMI

The influence of viscous heating on the stability of Taylor–Couette flow is investigated theoretically. Based on a linear stability analysis it is shown that viscous heating leads to significant destabilization of the Taylor–Couette flow. Specifically, it is shown that in the presence of viscous dissipation the most dangerous disturbances are axisymmetric and that the temporal characteristic of the secondary flow is very sensitive to the thermal boundary conditions. If the temperature difference between the two cylinders is small, the secondary flow is stationary as in the case of isothermal Taylor–Couette flow. However, when the temperature difference between the two cylinders is large, time-dependent secondary states are predicted. These linear stability predictions are in agreement with the experimental observations of White & Muller (2000) in terms of onset conditions as well as the spatiotemporal characteristics of the secondary flow. Nonlinear stability analysis has revealed that over a broad range of operating conditions, the bifurcation to the time-dependent secondary state is subcritical, while stationary states result as a consequence of supercritical bifurcation. Moreover, the supercritically bifurcated stationary state undergoes a secondary bifurcation to a time-dependent flow. Overall, the structure of the time-dependent state predicted by the analysis compares very well with the experimental observations of White & Muller (2000) that correspond to slowly moving vortices parallel to the cylinder axis. The significant destabilization observed in the presence of viscous heating arises as the result of the coupling of the perturbation velocity and the base-state temperature gradient that gives rise to fluctuations in the radial temperature distribution. Due to the thermal sensitivity of the fluid these fluctuations greatly modify the fluid viscosity and reduce the dissipation of disturbances provided by the viscous stress terms in the momentum equation.


Sign in / Sign up

Export Citation Format

Share Document