scholarly journals Soliton Solutions, Bäcklund Transformation and Lax Pair for Coupled Burgers System via Bell Polynomials

2015 ◽  
Vol 70 (5) ◽  
pp. 359-363 ◽  
Author(s):  
Ömer Ünsal ◽  
Filiz Taşcan

AbstractIn this work, we apply the binary Bell polynomial approach to coupled Burgers system. In other words, we investigate possible integrability of referred system. Bilinear form and soliton solutions are obtained, some figures related to these solutions are given. We also get Bäcklund transformations in both binary Bell polynomial form and bilinear form. Based on the Bäcklund transformation, Lax pair is obtained. Namely, this is a study in which integrabilitiy of coupled burgers system is investigated.

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
He Li ◽  
Yi-Tian Gao

With Bell polynomials and symbolic computation, this paper investigates the (3+1)-dimensional Jimbo-Miwa equation, which is one of the equations in the Kadomtsev-Petviashvili hierarchy of integrable systems. We derive a bilinear form and construct a bilinear Bäcklund transformation (BT) for the (3+1)-dimensional Jimbo-Miwa equation, by virtue of which the soliton solutions are obtained. Bell-polynomial-typed BT is also constructed and cast into the bilinear BT.


2020 ◽  
Vol 34 (32) ◽  
pp. 2050371
Author(s):  
Xue-Dong Chai ◽  
Chun-Xia Li

Binary Bell polynomial approach is applied to study the coupled Ramani equation, which is the generalization of the Ramani equation. Based on the concept of scale invariance, the coupled Ramani equation is written in terms of binary Bell polynomials of two dimensionless field variables, which leads to the bilinear coupled Ramani equation directly. As a consequence, the bilinear Bäcklund transformation, Lax pair and conservation laws are systematically constructed by virtue of binary Bell polynomials.


2016 ◽  
Vol 30 (25) ◽  
pp. 1650265 ◽  
Author(s):  
Zhong-Zhou Lan ◽  
Yi-Tian Gao ◽  
Jin-Wei Yang ◽  
Chuan-Qi Su ◽  
Qi-Min Wang

Under investigation in this paper is a (2[Formula: see text]+[Formula: see text]1)-dimensional B-type Kadomtsev–Petviashvili equation for the shallow water wave in a fluid or electrostatic wave potential in a plasma. Bilinear form, Bäcklund transformation and Lax pair are derived based on the binary Bell polynomials. Multi-soliton solutions are constructed via the Hirota’s method. Propagation and interaction of the solitons are illustrated graphically: (i) Through the asymptotic analysis, elastic and inelastic interactions between the two solitons are discussed analytically and graphically, respectively. The elastic interaction, amplitudes, velocities and shapes of the two solitons remain unchanged except for a phase shift. However, in the area of the inelastic interaction, amplitudes of the two solitons have a linear superposition. (ii) Elastic interactions among the three solitons indicate that the properties of the elastic interactions among the three solitons are similar to those between the two solitons. Moreover, oblique and overtaking interactions between the two solitons are displayed. Oblique interactions among the three solitons and interactions among the two parallel solitons and a single one are presented as well. (iii) Inelastic–elastic interactions imply that the interaction between the inelastic region and another one is elastic.


2017 ◽  
Vol 72 (10) ◽  
pp. 963-972
Author(s):  
Xiao-Yu Wu ◽  
Bo Tian ◽  
Lei Liu ◽  
Yan Sun

AbstractUnder investigation in this paper are the coupled Ablowitz–Ladik equations, which are linked to the optical fibres, waveguide arrays, and optical lattices. Binary Bell polynomials are applied to construct the bilinear forms and bilinear Bäcklund transformation. Bright/dark one- and two-soliton solutions are also obtained. Asymptotic analysis indicates that the interactions between the bright/dark two solitons are elastic. Amplitudes and velocities of the bright solitons increase as the value of the lattice spacing increases. Increasing value of the lattice spacing can lead to the increase of both the bright solitons’ amplitudes and velocities, and the decrease of the velocities of the dark solitons. The lattice spacing parameter has no effect on the amplitudes of the dark solitons. Overtaking interaction between the unidirectional bright two solitons and a bound state of the two equal-velocity solitons is presented. Overtaking interaction between the unidirectional dark two solitons and the two parallel dark solitons is also plotted.


2017 ◽  
Vol 31 (22) ◽  
pp. 1750126 ◽  
Author(s):  
Qian-Min Huang ◽  
Yi-Tian Gao

Under investigation in this letter is a variable-coefficient (3[Formula: see text]+[Formula: see text]1)-dimensional generalized shallow water wave equation. Bilinear form and Bäcklund transformation are obtained. One-, two- and three-soliton solutions are derived via the Hirota bilinear method. Interaction and propagation of the solitons are discussed graphically. Stability of the solitons is studied numerically. Soliton amplitude is determined by the spectral parameters. Soliton velocity is not only related to the spectral parameters, but also to the variable coefficients. Phase shifts are the only difference between the two-soliton solutions and the superposition of the two relevant one-soliton solutions. Numerical investigation on the stability of the solitons indicates that the solitons could resist the disturbance of small perturbations and propagate steadily.


2016 ◽  
Vol 30 (03) ◽  
pp. 1650008 ◽  
Author(s):  
Lei Liu ◽  
Bo Tian ◽  
Wen-Rong Sun ◽  
Yu-Feng Wang ◽  
Yun-Po Wang

The transition phenomenon of few-cycle-pulse optical solitons from a pure modified Korteweg–de Vries (mKdV) to a pure sine-Gordon regime can be described by the nonautonomous mKdV–sinh-Gordon equation with time-dependent coefficients. Based on the Bell polynomials, Hirota method and symbolic computation, bilinear forms and soliton solutions for this equation are obtained. Bäcklund transformations (BTs) in both the binary Bell polynomial and bilinear forms are obtained. By virtue of the BTs and Ablowitz–Kaup–Newell–Segur system, Lax pair and infinitely many conservation laws for this equation are derived as well.


2016 ◽  
Vol 30 (24) ◽  
pp. 1650309
Author(s):  
Lin Wang ◽  
Qixing Qu ◽  
Liangjuan Qin

In this paper, two (3[Formula: see text]+[Formula: see text]1)-dimensional nonlinear evolution equations (NLEEs) are under investigation by employing the Hirota’s method and symbolic computation. We derive the bilinear form and bilinear Bäcklund transformation (BT) for the two NLEEs. Based on the bilinear form, we obtain the multi-soliton solutions for them. Furthermore, multi-soliton solutions in terms of Wronskian determinant for the first NLEE are constructed, whose validity is verified through direct substitution into the bilinear equations.


Sign in / Sign up

Export Citation Format

Share Document