On Symmetry Analysis and Conservation Laws of the AKNS System

2016 ◽  
Vol 71 (8) ◽  
pp. 741-750 ◽  
Author(s):  
Zhonglong Zhao ◽  
Bo Han

AbstractThe Lie symmetry analysis is applied to study the Ablowitz–Kaup–Newell–Segur (AKNS) system of water wave model. The AKNS system can be obtained from a dispersive-wave system via a variable transformation. Lie point symmetries and corresponding point transformations are determined. The optimal system of one-dimensional subalgebras is presented. On the basis of the optimal system, the similarity reductions and the invariant solutions are obtained. Some conservation laws are derived using the multipliers. In addition, the AKNS system is quasi self-adjoint. The conservation laws associated with the symmetries are also constructed.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Khadijo Rashid Adem ◽  
Chaudry Masood Khalique

Lie symmetry analysis is performed on a generalized two-dimensional nonlinear Kadomtsev-Petviashvili-modified equal width equation. The symmetries and adjoint representations for this equation are given and an optimal system of one-dimensional subalgebras is derived. The similarity reductions and exact solutions with the aid ofG′/G-expansion method are obtained based on the optimal systems of one-dimensional subalgebras. Finally conservation laws are constructed by using the multiplier method.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 97 ◽  
Author(s):  
Ben Gao ◽  
Yao Zhang

In this paper, Lie symmetry analysis is presented for the (3 + 1)-dimensional BKP-Boussinesq equation, which seriously affects the dispersion relation and the phase shift. To start with, we derive the Lie point symmetry and construct the optimal system of one-dimensional subalgebras. Moreover, according to the optimal system, similarity reductions are investigated and we obtain exact solutions of reduced equations by means of the Tanh method. In the end, we establish conservation laws using Ibragimov’s approach.


Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 341 ◽  
Author(s):  
Aliyu Aliyu ◽  
Mustafa Inc ◽  
Abdullahi Yusuf ◽  
Dumitru Baleanu

In this work, we study the completely integrable sixth-order nonlinear Ramani equation. By applying the Lie symmetry analysis technique, the Lie point symmetries and the optimal system of one-dimensional sub-algebras of the equation are derived. The optimal system is further used to derive the symmetry reductions and exact solutions. In conjunction with the Riccati Bernoulli sub-ODE (RBSO), we construct the travelling wave solutions of the equation by solving the ordinary differential equations (ODEs) obtained from the symmetry reduction. We show that the equation is nonlinearly self-adjoint and construct the conservation laws (CL) associated with the Lie symmetries by invoking the conservation theorem due to Ibragimov. Some figures are shown to show the physical interpretations of the acquired results.


2017 ◽  
Vol 72 (3) ◽  
pp. 269-279 ◽  
Author(s):  
Xiu-Bin Wang ◽  
Shou-Fu Tian ◽  
Chun-Yan Qin ◽  
Tian-Tian Zhang

AbstractIn this article, a generalised Whitham–Broer–Kaup–Like (WBKL) equations is investigated, which can describe the bidirectional propagation of long waves in shallow water. The equations can be reduced to the dispersive long wave equations, variant Boussinesq equations, Whitham–Broer–Kaup–Like equations, etc. The Lie symmetry analysis method is used to consider the vector fields and optimal system of the equations. The similarity reductions are given on the basic of the optimal system. Furthermore, the power series solutions are derived by using the power series theory. Finally, based on a new theorem of conservation laws, the conservation laws associated with symmetries of this equations are constructed with a detailed derivation.


2019 ◽  
Vol 17 (1) ◽  
pp. 1045-1054
Author(s):  
Hengtai Wang ◽  
Huiwen Chen ◽  
Zigen Ouyang ◽  
Fubin Li

Abstract In this paper, Lie symmetry analysis is performed for the equation derived from $(2+1)$-dimensional higher order Broer-Kaup equation. Meanwhile, the optimal system and similarity reductions based on the Lie group method are obtained. Furthermore, the conservation law is studied via the Ibragimov’s method.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Baoyong Guo ◽  
Huanhe Dong ◽  
Yong Fang

In this paper, the time-fractional Fujimoto–Watanabe equation is investigated using the Riemann–Liouville fractional derivative. Symmetry groups and similarity reductions are obtained by virtue of the Lie symmetry analysis approach. Meanwhile, the time-fractional Fujimoto–Watanabe equation is transformed into three kinds of reduced equations and the third of which is based on Erdélyi–Kober fractional integro-differential operators. Furthermore, the conservation laws are also acquired by Ibragimov’s theory.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Hengtai Wang ◽  
Aminu Ma’aruf Nass ◽  
Zhiwei Zou

In this article, we discussed the Lie symmetry analysis of C 1 m , a , b fractional and integer order differential equations. The symmetry algebra of both differential equations is obtained and utilized to find the similarity reductions, invariant solutions, and conservation laws. In both cases, the symmetry algebra is of low dimensions.


Sign in / Sign up

Export Citation Format

Share Document