Zur Kenntnis des Argyrodit-Strukturtyps: Die Kristallstruktur von Ag8SiS6 / The Argyrodite Structure Type : The Crystal Structure of Ag8SiS6

1977 ◽  
Vol 32 (4) ◽  
pp. 373-379 ◽  
Author(s):  
Bernt Krebs ◽  
Jürgen Mandt

The room temperature modification of Ag8SiS6 is orthorhombic, space group Pna21, with α = 15.024, b = 7.428, c = 10.533 Å, Z = 4. A complete single crystal X-ray structure analysis shows the structure to contain tetrahedral SiS4(4-) units (Si-S 2.094(12) ... 2.130(12) Å) besides isolated sulfide groups coordinated by Ag; the compound may thus be formulated as Ag8(SiS4)(S)2. The coordination of the Ag atoms by sulfur is distorted tetrahedral (Ag-S 2.557...2.757 A), approximately trigonal planar (Ag-S 2.386...2.775 A, with one additional weakly bonded axial S at 2.991 ... 3.330 Å), or linear (Ag-S 2.414... 2.443 Å). Within the (ordered) Ag sublattice the temperature factors are significantly higher than for Si and S, indicating a certain mobility of the Ag atoms. The arrangement of the thiosilicate -sulfide part of the structure is pseudocubic face-centered, showing the close structural relationship to the disordered cubic high temperature modification of Ag8GeTe6.

2012 ◽  
Vol 194 ◽  
pp. 1-4
Author(s):  
Iryna Tokaychuk ◽  
Yaroslav Tokaychuk ◽  
Roman E. Gladyshevskii

The structure of the new ternary compound Hf2GaSb3 was determined by means of X-ray powder diffraction. It crystallizes with the structure type Zr2CuSb3 which represents a ternary ordered derivative of the UAs2 type (Pearson symbol tP6, space group P-4m2, a = 3.89841(8), c = 8.62650(19) Å). The ternary compound can be regarded as an ordered, Ga-stabilized derivative of the high-temperature modification of the binary antimonide HfSb2 (structure type UAs2).


1993 ◽  
Vol 48 (5) ◽  
pp. 685-687 ◽  
Author(s):  
Peter Rögner ◽  
Klaus-Jürgen Range

The crystal structure of β-CsReO4, the roomtemperature modification of cesium perrhenate, was determined from single-crystal X-ray data as orthorhombic, space group P nma, a = 5.7556(9), b = 5.9964(8), c = 14.310(2) Å and Z = 4.The structure was refined to R = 0.027, Rw = 0.023 for 779 absorption-corrected reflections. It represents an orthorhombic distortion of the tetragonal high-temperature phase α-CsReO4. The structure of β-CsReO4 comprises isolated ReO4 tetrahedra, linked together by Cs ions. The average Re-O distance was found to be 1.714(4) Å.


2007 ◽  
Vol 22 (4) ◽  
pp. 334-339 ◽  
Author(s):  
F. Laufek ◽  
A. Vymazalová ◽  
J. Plášil

Crystal structure of high-temperature modification of Pd73Sn14Te13 has been refined by the Rietveld method from laboratory X-ray powder diffraction data. Refined crystallographic data of Pd73Sn14Te13 are a=7.6456(3) Å, c=13.9575(9) Å, V=706.75(6) Å3, space group P63cm (No. 185), Z=6, and Dx=10.71 g/cm3. The title compound is isostructural with Pd5Sb2 and Ni5As2; it can be considered as a stacking and filling variant of the Ni2In structure. An important structural feature in the high-temperature modification of Pd73Sn14Te13 is the presence of various Pd-Pd bonds.


2021 ◽  
pp. 1-3
Author(s):  
Carina Schlesinger ◽  
Edith Alig ◽  
Martin U. Schmidt

The structure of the anticancer drug carmustine (1,3-bis(2-chloroethyl)-1-nitrosourea, C5H9Cl2N3O2) was successfully determined from laboratory X-ray powder diffraction data recorded at 278 K and at 153 K. Carmustine crystallizes in the orthorhombic space group P212121 with Z = 4. The lattice parameters are a = 19.6935(2) Å, b = 9.8338(14) Å, c = 4.63542(6) Å, V = 897.71(2) ų at 153 K, and a = 19.8522(2) Å, b = 9.8843(15) Å, c = 4.69793(6) Å, V = 921.85(2) ų at 278 K. The Rietveld fits are very good, with low R-values and smooth difference curves of calculated and experimental powder data. The molecules form a one-dimensional hydrogen bond pattern. At room temperature, the investigated commercial sample of carmustine was amorphous.


2020 ◽  
Vol 151 (9) ◽  
pp. 1317-1328
Author(s):  
Matthias Weil ◽  
Berthold Stöger

Abstract The caesium phosphates Cs3(H1.5PO4)2(H2O)2 and Cs3(H1.5PO4)2 were obtained from aqueous solutions, and Cs4P2O7(H2O)4 and CsPO3 from solid state reactions, respectively. Cs3(H1.5PO4)2, Cs4P2O7(H2O)4, and CsPO3 were fully structurally characterized for the first time on basis of single-crystal X-ray diffraction data recorded at − 173 °C. Monoclinic Cs3(H1.5PO4)2 (Z = 2, C2/m) represents a new structure type and comprises hydrogen phosphate groups involved in the formation of a strong non-symmetrical hydrogen bond (accompanied by a disordered H atom over a twofold rotation axis) and a very strong symmetric hydrogen bond (with the H atom situated on an inversion centre) with symmetry-related neighbouring anions. Triclinic Cs4P2O7(H2O)4 (Z = 2, P$$\bar{1}$$ 1 ¯ ) crystallizes also in a new structure type and is represented by a diphosphate group with a P–O–P bridging angle of 128.5°. Although H atoms of the water molecules were not modelled, O···O distances point to hydrogen bonds of medium strengths in the crystal structure. CsPO3 is monoclinic (Z = 4, P21/n) and belongs to the family of catena-polyphosphates (MPO3)n with a repetition period of 2. It is isotypic with the room-temperature modification of RbPO3. The crystal structure of Cs3(H1.5PO4)2(H2O)2 was re-evaluated on the basis of single-crystal X-ray diffraction data at − 173 °C, revealing that two adjacent hydrogen phosphate anions are connected by a very strong and non-symmetrical hydrogen bond, in contrast to the previously described symmetrical bonding situation derived from room temperature X-ray diffraction data. In the four title crystal structures, coordination numbers of the caesium cations range from 7 to 12. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document