scholarly journals Notizen: The Crystal Structure of β-CsReO4, the Room-Temperature Modification of Cesium Perrhenate

1993 ◽  
Vol 48 (5) ◽  
pp. 685-687 ◽  
Author(s):  
Peter Rögner ◽  
Klaus-Jürgen Range

The crystal structure of β-CsReO4, the roomtemperature modification of cesium perrhenate, was determined from single-crystal X-ray data as orthorhombic, space group P nma, a = 5.7556(9), b = 5.9964(8), c = 14.310(2) Å and Z = 4.The structure was refined to R = 0.027, Rw = 0.023 for 779 absorption-corrected reflections. It represents an orthorhombic distortion of the tetragonal high-temperature phase α-CsReO4. The structure of β-CsReO4 comprises isolated ReO4 tetrahedra, linked together by Cs ions. The average Re-O distance was found to be 1.714(4) Å.

1992 ◽  
Vol 7 (4) ◽  
pp. 226-227 ◽  
Author(s):  
Fu Zhengmin ◽  
Li Wenxiu

AbstractThe crystal structure of the high-temperature phase of Sr2ZnWO6 prepared by air quenching from 1200° C has been determined by means of X-ray powder diffraction. β-Sr2ZnWO6 belongs to the cubic system, with space group Fm3m and a lattice parameter a = 7.9266 Å at room temperature. Its measured density is Dm = 6.93g/cm3, and each unit cell contains four formula weights.


1979 ◽  
Vol 34 (3) ◽  
pp. 522-523 ◽  
Author(s):  
Hans Joachim Berthold ◽  
Brigitte Gabriele Kruska ◽  
Rudolf Wartchow

Abstract The crystal structure of the orientationally disordered, cubic high-temperature phase of NaC104 has been investigated using single crystal X-ray diffraction data. Space group Fm3m-O5h, Z = 4, sodium and chlorine as in NaCl, oxygen in position 96 j (occupation factor 1/6).


2013 ◽  
Vol 25 (22) ◽  
pp. 4623-4632 ◽  
Author(s):  
Michael Zeilinger ◽  
Iryna M. Kurylyshyn ◽  
Ulrich Häussermann ◽  
Thomas F. Fässler

1977 ◽  
Vol 32 (4) ◽  
pp. 373-379 ◽  
Author(s):  
Bernt Krebs ◽  
Jürgen Mandt

The room temperature modification of Ag8SiS6 is orthorhombic, space group Pna21, with α = 15.024, b = 7.428, c = 10.533 Å, Z = 4. A complete single crystal X-ray structure analysis shows the structure to contain tetrahedral SiS4(4-) units (Si-S 2.094(12) ... 2.130(12) Å) besides isolated sulfide groups coordinated by Ag; the compound may thus be formulated as Ag8(SiS4)(S)2. The coordination of the Ag atoms by sulfur is distorted tetrahedral (Ag-S 2.557...2.757 A), approximately trigonal planar (Ag-S 2.386...2.775 A, with one additional weakly bonded axial S at 2.991 ... 3.330 Å), or linear (Ag-S 2.414... 2.443 Å). Within the (ordered) Ag sublattice the temperature factors are significantly higher than for Si and S, indicating a certain mobility of the Ag atoms. The arrangement of the thiosilicate -sulfide part of the structure is pseudocubic face-centered, showing the close structural relationship to the disordered cubic high temperature modification of Ag8GeTe6.


Author(s):  
Akira Yoshiasa ◽  
Tomotaka Nakatani ◽  
Akihiko Nakatsuka ◽  
Maki Okube ◽  
Kazumasa Sugiyama ◽  
...  

A high-temperature single-crystal X-ray diffraction study of a synthetic PbTiO3perovskite was carried out over the wide temperature range 298–928 K. A transition from a tetragonal (P4mm) to a cubic (Pm \bar 3 m) phase has been revealed near 753 K. In the non-centrosymmetricP4mmsymmetry group, the difference in relative displacement between Pb and O along thec-axis is much larger than that between Ti and O. The Pb and Ti cations contribute sufficiently to polarization being shifted in the opposite direction compared with the shift of O atoms. Deviation from the linear changes in Debye–Waller factors and bonding distances in the tetragonal phases can be interpreted as a precursor phenomenon before the phase transition. Disturbance of the temperature factorUeqfor O is observed in the vicinity of the transition point, whileUeqvalues for Pb and Ti are continuously changing with increasing temperature. The O site includes the clear configurational disorder in the cubic phase. The polar local positional distortions remain in the cubic phase and are regarded as the cause of the paraelectricity. Estimated values of the Debye temperature ΘDfor Pb and Ti are 154 and 467 K in the tetragonal phase and decrease 22% in the high-temperature phase. Effective potentials for Pb and Ti change significantly and become soft after the phase transition.


2013 ◽  
Vol 58 (1) ◽  
pp. 129-134 ◽  
Author(s):  
D. M. Novak ◽  
L. S. Smirnov ◽  
A. I. Kolesnikov ◽  
V. I. Voronin ◽  
I. F. Berger ◽  
...  

2000 ◽  
Vol 55 (6) ◽  
pp. 499-503 ◽  
Author(s):  
Kathrin Hofmann ◽  
Barbara Albert

The crystal structure of bis(triethylammonium)closo-decahydrodecaborate [bis(triethylammonium) decaboranate(10)], [(C2H5)3NH]2[B10H10], was determined and refined (space group Pmmn, no. 59, a = 989.7, b = 1333.7, c = 903.7 pm). The compound is a versatile starting material for many substances containing the [BioHio]2- entity and its derivatives. The closo-[B10H10]2- cluster is a bicapped square antiprism which is only slightly distorted. Its deviation from D4d symmetry is smaller than that of the B10 cages in every other compound containing this entity that have been structurally characterised. The presence of additional (N )H ---B3 interactions in form of multiple-centre bonds between the cations and the anions, which were postulated earlier and which should influence the cage symmetry, could not be confirmed. At 55 °C, the transition into a high temperature phase was investigated by X-ray powder diffraction. The high temperature phase crystallises in the tetragonal crystal system (a = 946.9, c = 1351.0 pm).


2001 ◽  
Vol 16 (4) ◽  
pp. 205-211 ◽  
Author(s):  
S. N. Tripathi ◽  
R. Mishra ◽  
M. D. Mathews ◽  
P. N. Namboodiri

X-ray powder diffraction investigation of the new high temperature polymorphs beta- and gamma-CaTeO3 and gamma- and delta-CaTe2O5 and picnometric measurements of the room temperature phases of the two compounds have been carried out. The study led to the elucidation of their unit cell structures and assignment of entirely new lattice types and parameters to the room temperature phases of CaTeO3 and CaTe2O5 in contrast and supersession to the existing structural information. The results are as follows: CaTeO3 has only one stable phase at room temperature and temperatures up to 882 °C, i.e., α- and has a triclinic unit cell with a=4.132±0.003 Å, b=6.120±0.006 Å, c=12.836±0.013 Å, α=121.80°, β=99.72°, γ=97.26°. The first high temperature phase stable between 882 and 894 °C, i.e., β-CaTeO3, has a monoclinic lattice: a=20.577±0.007 Å, b=21.857±0.009 Å, c=4.111±0.002 Å, β=96.15°, while the next phase stable above 894 °C, i.e., γ-CaTeO3, has a hexagonal unit cell with parameters: a=14.015±0.0001 Å, c=9.783±0.001 Å, c/a=0.698. CaTe2O5 has one stable phase at temperatures up to 802 °C, i.e., α-CaTe2O5 with a monoclinic lattice and parameters: a=9.069±0.002 Å, b=25.175±0.007 Å, c=3.366±0.001 Å, β=98.29 °. The first high temperature phase stable in the range 802–845°, i.e., β-CaTe2O5, is monoclinic with unit cell parameters: a=4.146±0.001 Å, b=5.334±0.002 Å, c=6.105±0.002 Å, β=98.362 °; the next higher temperature phase stable over 845–857 °C, i.e., γ-CaTe2O5, has an orthorhombic unit cell with: a=8.638±0.001 Å, b=9.291±0.001 Å, c=7.862±0.001 Å and the highest temperature solid phase stable above 857 °C, i.e., δ-CaTe2O5 has a tetragonal unit cell with a=5.764±0.000 Å, c=32.074±0.020 Å, c/a=5.5637.


Author(s):  
Christian Scherf ◽  
Nicolay R. Ivanov ◽  
Su Jin Chung ◽  
Theo Hahn ◽  
Helmut Klapper

AbstractThe transitions between the room temperature phase III (space group


Sign in / Sign up

Export Citation Format

Share Document