Crystal structure of the anticancer drug carmustine determined by X-ray powder diffraction

2021 ◽  
pp. 1-3
Author(s):  
Carina Schlesinger ◽  
Edith Alig ◽  
Martin U. Schmidt

The structure of the anticancer drug carmustine (1,3-bis(2-chloroethyl)-1-nitrosourea, C5H9Cl2N3O2) was successfully determined from laboratory X-ray powder diffraction data recorded at 278 K and at 153 K. Carmustine crystallizes in the orthorhombic space group P212121 with Z = 4. The lattice parameters are a = 19.6935(2) Å, b = 9.8338(14) Å, c = 4.63542(6) Å, V = 897.71(2) ų at 153 K, and a = 19.8522(2) Å, b = 9.8843(15) Å, c = 4.69793(6) Å, V = 921.85(2) ų at 278 K. The Rietveld fits are very good, with low R-values and smooth difference curves of calculated and experimental powder data. The molecules form a one-dimensional hydrogen bond pattern. At room temperature, the investigated commercial sample of carmustine was amorphous.

1998 ◽  
Vol 13 (4) ◽  
pp. 202-209 ◽  
Author(s):  
J. A. Henao ◽  
J. M. Delgado ◽  
M. Quintero

The X-ray powder diffraction pattern of the room temperature phase of Cd4GeSe6, a II4 □ IV VI6 semiconducting material, has been recorded and evaluated. This material crystallizes in the monoclinic space group Cc [No. 9] with a=12.847(3), b=7.407(2), c=12.854(2) Å, β=109.82(1)°, and Z=4. The powder diffraction pattern was also used to refine the crystal structure of this material employing the Rietveld method. The refinement of 56 parameters led to RWP=13.2%, RP=9.95% for 3751 step intensities and RB=7.05% and RF=5.20% for 833 reflections. Cd4GeSe6 can be considered a defect “adamantane-structure” material with a sphalerite-related superstructure.


Author(s):  
Dongmin Lee ◽  
Hyeri Bu ◽  
Dohwan Kim ◽  
Jooeun Hyoung ◽  
Seung-Tae Hong

The crystal structure of calcium perchlorate anhydrate was determined from laboratory X-ray powder diffraction data. The title compound was obtained by heating hydrated calcium perchlorate [Ca(ClO4)2·xH2O] at 623 K in air for 12 h. It crystallizes in the orthorhombic space group Pbca and is isotypic with Ca(AlD4)2. The asymmetric unit contains one Ca, two Cl and eight O sites, all on general sites (Wyckoff position 8c). The crystal structure consists of isolated ClO4 − tetrahedra and Ca2+ cations. The Ca2+ cation is coordinated by eight O atoms of eight symmetry-related ClO4 − tetrahedra within a distorted square-antiprismatic environment.


2003 ◽  
Vol 18 (2) ◽  
pp. 140-143 ◽  
Author(s):  
Lingmin Zeng ◽  
Liangwei Chen ◽  
Shaoping Pu ◽  
Yikun Yang ◽  
Wenggui Gao ◽  
...  

X-ray powder diffraction data for the anticancer drug PtCl2(C2H3O2)2(C6H13N)(NH3) are reported. The crystal structure of PtCl2(C2H3O2)2(C6H13N)(NH3) obtained from a Rietveld refinement are: space group P21/a, a=13.547(2) Å, b=8.260(1) Å, c=14.638(3) Å, β=110.429(2)°, V=1534.96 Å3, Z=4 and Dcalc.=2.068 Mg/m3.


2015 ◽  
Vol 30 (4) ◽  
pp. 370-371
Author(s):  
J.A. Kaduk ◽  
K. Zhong ◽  
T.N. Blanton ◽  
S. Gates ◽  
T.G. Fawcett

The room-temperature crystal structure of levothyroxine sodium pentahydrate has been refined using synchrotron powder diffraction data. The compound crystallizes in space group P1 (#1) with a = 8.2489(4), b = 9.4868(5), c = 15.8298(6) Å, α = 84.1387(4), β = 83.1560(3), γ = 85.0482(3) deg, V = 1220.071(9) Å3, and Z = 2. Hydrogen atoms (missing from the previously-reported structure) were included.


1999 ◽  
Vol 14 (4) ◽  
pp. 284-288 ◽  
Author(s):  
Hoong-Kun Fun ◽  
Ping Yang ◽  
Minoru Sasaki ◽  
Masasi Inoue ◽  
Hideoki Kadomatsu

The crystal structure of γ-Mo4O11 was obtained at room temperature (296 K) by Rietveld analysis with X-ray powder diffraction data. The crystal belongs to orthorhombic system, space group: Pna21, Z=4, Mr=559.753 (Atomic weights 1977), Dx=4.1228 g/cm3, F(000)=1024.0, μ=451.293 cm−1 (Int. Tab. Vol. C, Table 4.2.4.2, p. 193, λ=1.540 60 Å), a=24.4756(5) Å, b=6.7516(1) Å, c=5.4572(1) Å, and V=901.80(3) Å3. The structure was refined to Rwp=5.60%, Rp=4.27%, Rb=3.36%, and Rf=2.74% for 65 parameters with 3541 step intensities and 3055 peaks. Goodness of the fit S=3.35.


2005 ◽  
Vol 60 (12) ◽  
pp. 1269-1272 ◽  
Author(s):  
Claus Mühle ◽  
Andrey Karpov ◽  
Martin Jansen

The title compound has been synthesized by metathesis of Ba[Pt(CN)4]·4 H2O with Rb2SO4, in aqueous solution. Its crystal structure was solved from X-ray powder diffraction data using the simulated-annealing approach, and refined by Rietveld’s method. The compound crystallizes in space group Imma, a = 11.1432(2), b = 7.4382(1), c = 11.1896(2) Å, V = 927.45(3) Å3, Z = 4, Rp = 0.0402, Rw = 0.0247 (Nhkl = 173). Square-planar tetracyanoplatinate groups stack in an unprecedented eclipsed conformation, forming one-dimensional linear chains of Pt-atoms with Pt-Pt separations of 3.719 Å . Rb2[Pt(CN)4] was characterized by differential thermal analysis, thermogravimetry and infrared spectroscopy.


2009 ◽  
Vol 24 (4) ◽  
pp. 311-314 ◽  
Author(s):  
T. H. Peng ◽  
Y. F. Lou ◽  
S. F. Jin ◽  
W. Y. Wang ◽  
W. J. Wang ◽  
...  

Crystal structure of 4H-SiC was refined from room-temperature X-ray powder diffraction data using the Rietveld refinement method. The refined lattice constants were determined to be a=b=3.079 93(0) Å, c=10.082 22(2) Å, and the refined overall temperature factor B=0.383(3) Å2. Using the Debye approximation, the Debye temperature was successfully determined to be 1194.8 K.


1993 ◽  
Vol 8 (1) ◽  
pp. 54-56 ◽  
Author(s):  
Peter C. Burns ◽  
Frank C. Hawthorne

The crystal structure of α-CoSO4 has been refined by the Rietveld method from X-ray powder diffraction data. The structure is orthorhombic, space group Pnma, a = 8.6127(4), b = 6.7058(3), c = 4.7399(2) Å, V = 273.75(3) Å3. Final RB = 2.41%, RP = 5.24%, RWP=6.66%, RWP (expected) =5.74% (WP =weighted profile). The structure consists of edge-sharing octahedral chains parallel to [010] interconnected by SO4 tetrahedra.


2010 ◽  
Vol 25 (3) ◽  
pp. 247-252 ◽  
Author(s):  
F. Laufek ◽  
J. Návrátil

The crystal structure of skutterudite-related phase IrGe1.5Se1.5 has been refined by the Rietveld method from laboratory X-ray powder diffraction data. Refined crystallographic data for IrGe1.5Se1.5 are a=12.0890(2) Å, c=14.8796(3) Å, V=1883.23(6) Å3, space group R3 (No. 148), Z=24, and Dc=8.87 g/cm3. Its crystal structure can be derived from the ideal skutterudite structure (CoAs3), where Se and Ge atoms are ordered in layers perpendicular to the [111] direction of the original skutterudite cell. Weak distortions of the anion and cation sublattices were also observed.


Author(s):  
Robert E. Dinnebier ◽  
Hanne Nuss ◽  
Martin Jansen

AbstractThe crystal structures of solvent-free lithium, sodium, rubidium, and cesium squarates have been determined from high resolution synchrotron and X-ray laboratory powder patterns. Crystallographic data at room temperature of Li


Sign in / Sign up

Export Citation Format

Share Document