Thermochromism of Metal Exchange Reaction between Zinc(II) and Mercury(II) Porphyrins

1995 ◽  
Vol 50 (4) ◽  
pp. 545-550 ◽  
Author(s):  
Masaaki Tabata ◽  
Masahiro Ide ◽  
Kentaro Kaneko

Thermochromism was observed for an aqueous solution containing zinc(II) and mercury( II) cations and N-p-nitrobenzyl-5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin anion (NO2Bz(Htpps)4-) in the temperature range 10 to 70 °C. The equilibrium constants and the thermodynamic parameters of Zn(NO2Bztpps)3- and Hg(NO2Bztpps)3- have been determined spectrophotometrically to elucidate the thermochromism at 10, 15, 20, 25 and 30 °C in 0.1 mol dm-3 NaNO3. The protonation and metalation constants of NO2Bz(Htpps)4- are defined as K2 = [H2P][H+]-1[HP]-1, K3 = [H3P][H+]-1[H2P]-1 and KMP = [M P][H+][M2+]-1[HP]-1, where HP and MP denote the free base form of the prophyrin and the metalloporphyrins of zinc(II) and mercury(II), respectively. Charges of the prophyrin and metalloporphyrins are omitted for simplicity. The following values were found: logK2 = 7.75 ±0.02 (25 °C), ΔH°/kJmol-1 = -21.2±0.5 and ΔS°/Jmol-1K-1 = 77±1, logK3 = 2.55±0.02 (25 °C), ΔH°/kJmol-1 = -25±0.8 and ΔS°/Jmol-1K-1 = -35±3 and log KZnP = 0.63±0.03 (25 °C), ΔH°/kJmol-1 = 31.0±0.8 and ΔS°/Jmol-1K-1 = 116±3, logKHgP = 6.22±0.03 (25 °C), ΔH°/kJmol-1 = 4.5±0.7 and ΔS°/Jmol-1K-1 = 134±2. The distribution curve calculated from the thermodynamic parameters sufficiently agrees with the observed metal exchange reaction between the metalloporphyrins.

2003 ◽  
Vol 5 (3) ◽  
pp. 313-316 ◽  
Author(s):  
Reinhard W. Hoffmann ◽  
Mark Brönstrup ◽  
Michael Müller

2018 ◽  
Vol 20 (7) ◽  
pp. 5312-5318 ◽  
Author(s):  
Bei Zhang ◽  
Olga V. Safonova ◽  
Stephan Pollitt ◽  
Giovanni Salassa ◽  
Annelies Sels ◽  
...  

The fast metal exchange reaction between Au38 and AgxAu38−x nanoclusters has been studied by time resolved in situ X-ray absorption spectroscopy.


Clay Minerals ◽  
2012 ◽  
Vol 47 (4) ◽  
pp. 429-440 ◽  
Author(s):  
S. Gamoudi ◽  
N. Frini-Srasra ◽  
E. Srasra

AbstractThe use of organoclays as adsorbents in the remediation of polluted water has been the subject of many recent studies. In the present work, a Tunisian smectite modified with two cationic surfactants was used as an adsorbent to examine the adsorption kinetics, isotherms and thermodynamic parameters of fluoride ions from aqueous solution. Various pH values, initial concentrations and temperatures have been tested. Two simplified kinetic models, first-order and pseudo-second-order, were used to predict the adsorption rate constants. It was found that the adsorption kinetics of fluoride onto modified smectites at different operating conditions can best be described by the pseudo-second-order model. Adsorption isotherms and equilibrium adsorption capacities were determined by the fitting of the experimental data to well known isotherm models including those of Langmuir and Freundlich. The results showed that the Langmuir model appears to fit the adsorption better than the Freundlich adsorption model for the adsorption of fluoride ions onto modified smectites. The equilibrium constants were used to calculate thermodynamic parameters, such as the change of free energy, enthalpy and entropy. Results of this study demonstrated the effectiveness and feasibility of organoclays for the removal of fluoride ions from aqueous solution.


1984 ◽  
Vol 57 (8) ◽  
pp. 2319-2320 ◽  
Author(s):  
Toshio Sugita ◽  
Yo-ichi Sakabe ◽  
Toshiaki Sasahara ◽  
Mitsunori Tsukada ◽  
Katsuhiko Ichikawa

Sign in / Sign up

Export Citation Format

Share Document