Polysulfonylamine, CXLII [1]. Ein supramolekulares Monomer-Dimer-Paar: Starke und schwache Wasserstoffbrücken in den Kristallstrukturen von Pyridinium-dimesylamid und 4,4´-Bipyridindiium-bis(dimesylamid) / Polysulfonylamines, CXLII [1]. A Supramolecular Monomer-Dimer Pair: Strong and Weak Hydrogen Bonding in the Crystal Structures of Pyridinium Dimesylamide and 4,4´-Bipyridinediium Bis(dimesylamide)

2001 ◽  
Vol 56 (10) ◽  
pp. 1041-1051 ◽  
Author(s):  
Oliver Moers ◽  
Ilona Lange ◽  
Karna Wijaya ◽  
Armand Blaschette ◽  
Peter G. Jones

In order to study packing arrangements and hydrogen bonding networks, low-temperature X-ray structures were determined for pyH+(MeSO2)2N- (M, orthorhombic, space group P212121, Z′ = 1) and 4,4′-bipyH22+ ·(MeSO2)2N- (D, monoclinic, C2/c, Z′ = 0.5). The structures consist of ionic formula entities assembled by N+-H···N- hydrogen bonds; the dication in D displays crystallographic C2 symmetry and has its two pyridyl moieties twisted by 43.9°. According to the packing architectures, D represents a supramolecular dimer of the monomeric congener M. In particular, the (MeSO2)2N- ions of the M structure are associated via short C(sp3) - H···O contacts to form a diamondoid network, whereas in D a topologically congruent framework is constructed from weakly hydrogen-bonded [(MeSO2)N-]2 nodes. Hexagonal channels in the anion substructures each include two adjacent stacks of monomeric pyH+ or “dimeric” 4,4-bipyH22+ cations that are linked to the channel walls by the strong hydrogen bond(s) and a set of short Car-H···O contacts. All C - H···O taken into consideration have normalized parameters d(H···O) ≤ 270 pm and θ(C - H···O) ≥ 115°.

2002 ◽  
Vol 57 (5) ◽  
pp. 534-546 ◽  
Author(s):  
Dagmar Henschel ◽  
Oliver Moers ◽  
Karna Wijaya ◽  
Andreas Wirth ◽  
Armand Blaschette ◽  
...  

In order to study weak hydrogen bonds originating from inductively activated C(sp3)-H donor groups, low-temperature X-ray structures are reported for three onium salts of general formula BH+(MeSO2)2N-, where BH+ is Me3N+CH2CH2OH (1; orthorhombic, space group P212121, Z′ = 1), Me3N+CH2C(O)OH (2; orthorhombic, P212121, Z′ = 1), or Me2HN+CH2CH2NMe2 (3; monoclinic, P21/c, Z′ = 1). The asymmetric units consist of cationanion pairs assembled by an O-H···O=S hydrogen bond in 1, an O-H···N- bond in 2, and an N+-H ··· N- bond in 3. The packings display a plethora of short interionic C(sp3)-H···O/N contacts that are geometrically consistent with weak hydrogen bonding; those taken into consideration have normalized parameters d(H ··· O) ≤ 269 pm, d(H···N) ≤ 257 pm and θ(C-H···O/N) ≥ 127°. The roles of the weak hydrogen bonds are as follows: In structures 1 and 3, the anions are associated into corrugated layers, which intercalate catemers of cations (1) or stacks of discrete cations (3), whereas structure 2 involves cation catemers surrounded by four anion catemers and vice versa; moreover, all cations are linked to adjacent anions by several weak hydrogen bonds (and to one anion in particular by the strong H bond). Among the cation-anion interactions, the N+(CH2-H···)3O tripod pattern arising in 1 and 2 is of special interest.


1985 ◽  
Vol 63 (8) ◽  
pp. 2119-2122 ◽  
Author(s):  
Masood A. Khan ◽  
Archibald W. McCulloch ◽  
A. Gavin McInnes

The crystal structures of [N(n-C4H9)4] [catechol … Cl] (1) and [N(n-C4H9)4] [catechol … Br] (2) have been determined by X-ray analysis which showed that the two structures are isomorphous, with the orthorhombic space group Pbca, Z = 8. The cell dimensions and final R-values are: (1) a = 15.323(2), b = 16.166(2), c = 19.713(2) Å, R = 0.048 for 1361 observed reflections; (2) a = 15.432(1), b = 16.244(2), c = 19.824(1) Å, R = 0.041 for 1958 observed reflections. The crystal structures consist of discrete tetra-n-butylammonium cations and catechol halide anions. Catechol forms two strong hydrogen bonds to a single halide ion giving a pattern of hydrogen bonding unique for such systems.


2002 ◽  
Vol 57 (7) ◽  
pp. 777-790 ◽  
Author(s):  
Dagmar Henschel ◽  
Oliver Moers ◽  
Ilona Lange ◽  
Armand Blaschette ◽  
Peter G Jones

As a sequel to prior reports on strong and weak hydrogen bonding in onium di(methanesulfonyl) amide crystals, low-temperature X-ray structures are described for three salts of general formula BH+(MeSO2)2N-, where BH+ is 2,2΄-bipyridinium (1; monoclinic, space group P21/n, Z΄ = 1), 1,10-phenanthrolinium (2; monoclinic, P21/c, Z΄ = 2), or 1,8-bis(dimethylamino) naphthalinium (3; orthorhombic, P212121, Z΄ = 1). Monoprotonation of the organic bases by (MeSO2)2NH results in the formation of an intra-cation N-H···N hydrogen bond, which is asymmetric in 1 and 2, but approximately symmetric in the proton-sponge cation of 3. Moreover, the acidic H atom is engaged in a cation-anion contact N-H···N- in 1 and 2 or H+···Oδ- in 3, thus conferring three-centre character upon the strong hydrogen bonding. Each structure displays a multitude of close interionic C-H···O/N contacts that are geometrically consistent with weak hydrogen bonding. A salient feature is provided by short S-CH2-H···O-S inter-anion contacts, which lead to layers in 1 and to catemers in 2, but are non-existent in structure 3. The cations of both 1 and 2 form π-stacks that are intercalated between the anion layers or surrounded by six anion catemers, whereas in structure 3 each cation is octahedrally coordinated by six anions and vice-versa. The heteroionic connectivity comprises the aforementioned branches of the strong three-centre hydrogen bonds (in 1-3), numerous Car-H···A bonds (1, 2: A = O; 3: A = O, N), S-CH2-H···Nring interactions (1, 2), and close N-CH2-H···O=S contacts (3; possibly destabilizing).


2004 ◽  
Vol 60 (1) ◽  
pp. 90-96 ◽  
Author(s):  
Biserka Kojić-Prodić ◽  
Berislav Perić ◽  
Zoran Štefanić ◽  
Anton Meden ◽  
Janja Makarević ◽  
...  

To compare the structural properties of oxalamide and thiooxalamide groups in the formation of hydrogen bonds suitable for supramolecular assemblies a series of retropeptides was studied. Some of them, having oxalamide bridges, are gelators of organic solvents and water. However, retropeptides with oxygen replaced by the sp 2 sulfur have not exhibited such properties. The crystal structures of the two title compounds are homostructural, i.e. they have similar packing arrangements. The monothio compound crystallizes in the orthorhombic space group P212121 with two molecules in the asymmetric unit arranged in a hydrogen-bond network with an approximate 41 axis along the crystallographic b axis. However, the dithio and dioxo analogues crystallize in the tetragonal space group P41 with similar packing patterns and hydrogen-bonding systems arranged in agreement with a crystallographic 41 axis. Thus, these two analogues are isostructural having closely related hydrogen-bonding patterns in spite of the different size and polarity of oxygen and sulfur which serve as the proton acceptors.


2002 ◽  
Vol 57 (8) ◽  
pp. 914-921 ◽  
Author(s):  
P. G. Jones ◽  
J. Ossowski ◽  
P. Kus

N,N′-Dibutyl-terephthaldiamide (1), N,N′-dihexyl-terephthaldiamide (2), N,N′-di(tert-butyl)- terephthaldiamide (3), N,N,N′,N′-tetrabutyl-terephthaldiamide (4), 1,1′-terephthaloylbis- pyrrolidine (5), 1,1′-terephthaloyl-bis-piperidine (6), and 4,4′-terephthaloyl-bis-morpholine (7) have been synthesised and physicochemically characterised. The X-ray structure determinations reveal imposed inversion symmetry for compounds 1-6; compound 3 has two independent molecules with inversion symmetry in the asymmetric unit. Compounds 1-3 form classical hydrogen bonds of the type N-H···O=C, leading to a ribbon-like arrangement of molecules (1 and 2) or a layer structure (3). Compound 3 also displays a very short C-H···O interaction, a type of hydrogen bond that is also observed in compounds 4-7, which lack classical donors; thereby compounds 4-6 form layer structures and 7 a complex threedimensional network.


2014 ◽  
Vol 70 (2) ◽  
pp. 241-249 ◽  
Author(s):  
Wilhelm Maximilian Hützler ◽  
Ernst Egert

The preferred hydrogen-bonding patterns in the crystal structures of 5-propyl-2-thiouracil, C7H10N2OS, (I), 5-methoxy-2-thiouracil, C5H6N2O2S, (II), 5-methoxy-2-thiouracil–N,N-dimethylacetamide (1/1), C5H6N2O2S·C4H9NO, (IIa), 5,6-dimethyl-2-thiouracil, C6H8N2OS, (III), 5,6-dimethyl-2-thiouracil–1-methylpyrrolidin-2-one (1/1), C6H8N2OS·C5H9NO, (IIIa), 5,6-dimethyl-2-thiouracil–N,N-dimethylformamide (2/1), 2C6H8N2OS·C3H7NO, (IIIb), 5,6-dimethyl-2-thiouracil–N,N-dimethylacetamide (2/1), 2C6H8N2OS·C4H9NO, (IIIc), and 5,6-dimethyl-2-thiouracil–dimethyl sulfoxide (2/1), 2C6H8N2OS·C2H6OS, (IIId), were analysed. All eight structures containR22(8) patterns. In (II), (IIa), (III) and (IIIa), they are formed by two N—H...S hydrogen bonds, and in (I) by alternating pairs of N—H...S and N—H...O hydrogen bonds. In contrast, the structures of (IIIb), (IIIc) and (IIId) contain `mixed'R22(8) patterns with one N—H...S and one N—H...O hydrogen bond, as well asR22(8) motifs with two N—H...O hydrogen bonds.


2007 ◽  
Vol 63 (3) ◽  
pp. 448-458 ◽  
Author(s):  
El-Eulmi Bendeif ◽  
Slimane Dahaoui ◽  
Nourredine Benali-Cherif ◽  
Claude Lecomte

The crystal structures of three similar guaninium salts, guaninium monohydrogenphosphite monohydrate, C5H6N5O+·H2O3P−·H2O, guaninium monohydrogenphosphite dihydrate, C5H6N5O+·H2O3P−·2H2O, and guaninium dihydrogenmonophosphate monohydrate, C5H6N5O+·H2O4P−·H2O, are described and compared. The crystal structures have been determined from accurate single-crystal X-ray data sets collected at 100 (2) K. The two phosphite salts are monoclinic, space group P21/c, with different packing and the monophosphate salt is also monoclinic, space group P21/n. An investigation of the hydrogen-bond network in these guaninium salts reveals the existence of two ketoamine tautomers, the N9H form and an N7H form.


1999 ◽  
Vol 54 (11) ◽  
pp. 1420-1430 ◽  
Author(s):  
Oliver Moers ◽  
Karna Wijaya ◽  
Dagmar Henschel ◽  
Armand Blaschette ◽  
Peter G. Jones

In order to examine packing preferences and hydrogen bond patterns in secondary ammonium salts, low-temperature X-ray analyses were conducted for six compounds of general formula R2NH2+MeSO2)2 N-, where R2NH2+ = Me2NH2+ (1, triclinic, space group P1̄̄), MeEtNH2+,(2, monoclinic, P21/c), Et2NH2+ (3. triclinic, P1), pyrrolidinium (4, triclinic, P1), piperidinium (5, monoclinic, C2/c) or morpholinium (6, monoclinic, P21/c). Throughout the series, the constant anion retains a rigid conformation approximating to C2 symmetry and thus provides a geometrically reliable set of five potential hydrogen bond acceptors. Nevertheless, the six compounds exhibit a variety of unpredictable packing patterns, showing that, in unfavourable cases, the steric demands of molecular fragments not involved in hydrogen bonding can substantially alter the structure of a family of ionic crystals. In the present structures, the NH2+ donor groups form hydrogen bonds N+-H···N-/O to two (3-6) or three (1,2) adjacent anions. The occurrence of various two-, three- and four-centre hydrogen bonds leads to six different patterns, resulting in cation-anion layers (1, 2), discrete formula unit dimers (3, 4) or cation-anion chains (5, 6); in the morpholinium salt 6, these chains are associated into layers by a weak N+ - H ··· O(cation) interaction. In each of the crystal packings, short C-H···O contacts with H···O ≤ 270 pm and C-H ···O ≥ 130° are observed.


1988 ◽  
Vol 41 (9) ◽  
pp. 1305 ◽  
Author(s):  
JM Frederiksen ◽  
E Horn ◽  
MR Snow ◽  
ERT Tiekink

The crystal structures of the diastereoisomers formed between the hydrogen-D-tartrate anion and the cations (+)-(Λ-[Co(en)2(NO2)2]+ (1) and (-)-(Δ)-[Co(en)2(NO2)2]+ (2) have been determined by three-dimensional X-ray analysis. The crystal structures are comprised of octahedrally coordinated cobalt atoms, hydrogentartrate anions and water molecules interconnected by a complex hydrogen bonding network. In (1), columns of complex parallel to a 21 screw axis along a, are linked via hydrogen bonding contacts to a total of six chains of 'head-to-tail' hydrogentartrate strands. In contrast, in (2) the chains of hydrogentartrate anions associate with each other to form well defined 'walls' which sandwich hydrogen-bonded columns of complex cations such that the structure may be thought of as a layer structure of hydrogentartrate anions and complex cations. Crystals of both compounds are orthorhombic, space group P212121 with Z = 4, unit cell parameters for (1): a 7.670(1), b 12.160(1), c 18.028(1)Ǻ, V 1681.4 Ǻ3 and for (2): a 7.735(2), b 8.505(5), c 26.846(9) Ǻ, V 1766 1 Ǻ3. The structures were each refined by a full-matrix least-squares procedure to final R 0.026, Rw 0.027 for 1764 reflections with I ≥ 2.5σ(I) for (1) and R 0.065, Rw 0.073 for 1322 reflections for (2).


2000 ◽  
Vol 55 (1) ◽  
pp. 5-11 ◽  
Author(s):  
Teresa Borowiak ◽  
Irena Wolska ◽  
Artur Korzański ◽  
Wolfgang Milius ◽  
Wolfgang Schnick ◽  
...  

The crystal structures of two compounds containing enaminone heterodiene systems and forming intermolecular hydrogen bonds N-H·O are reported: 1) 3-ethoxycarbonyl-2-methyl-4-pyridone (hereafter ETPY) and 2) 3-ethoxycarbonyl-2-phenyl-6-methoxycarbonyl-5,6-di-hydro-4-pyridone (hereafter EPPY). The crystal packing is controlled by intermolecular hydro­ gen bonds N-H·O = C connecting the heteroconjugated enaminone groups in infinite chains. In ETPY crystals the intermolecular hydrogen bond involves the heterodienic pathway with the highest π-delocalization that is effective for a very short N·O distance of 2.701(9) Å (average from two molecules in the asymmetric unit). Probably due to the steric hindrance, the hydrogen bond in EPPY is formed following the heterodienic pathway that involves the ester C = O group, although π-delocalization along this pathway is less than that along the pyridone-part pathway resulting in a longer N·O distance of 2.886(3) Å


Sign in / Sign up

Export Citation Format

Share Document