Aminkomplexe von Silber(I)-disulfonylamiden, Teil I: Sekund¨are Amine [1]

2011 ◽  
Vol 66 (5) ◽  
pp. 449-458
Author(s):  
Eva-Maria Zerbe ◽  
Christoph Wölper ◽  
Peter G. Jones

We report the crystal structures of five amine-complexed silver(I) disulfonylamides of composition L2AgX (L = secondary amine, X = disulfonylamide anion) [1: bis(2,2,6,6-tetramethylpiperidine)- silver(I) dimesylamide, 2: bis(2,2,6,6-tetramethylpiperidine)(1,1,3,3-tetraoxo-1,3,2-benzodithiazolido) silver(I), 3: bis(diethylamine)(dimesylamido)silver(I), 4: bis(diethylamine)silver(I) 1,1,3,3-tetraoxo- 1,3,2-benzodithiazolide, 5: bis(dicyclohexylamine)silver(I) 1,1,3,3-tetraoxo-1,3,2-benzodithiazolide]. In the solid state 1, 4 and 5 are ionic compounds, whereas 2 and 3 appear to be molecular, but with long Ag-Ndisulfonylamide bonds (ca. 2.5 Å ), almost linear Namine-Ag-Namine bond angles (171, 158°) and S-N bond lengths more typical of purely ionic disulfonylamides. The packing of these complexes is governed by the formation of chains via motifs of Ag・ ・ ・O contacts and classical hydrogen bonds. The interaction motifs vary slightly depending on the steric demand of the amine substituents. For the molecular compounds, either new motifs appear (3) or intramolecular classical hydrogen bonds are formed, and linear arrays of molecules are generated by non-classical hydrogen bonds (2)

2010 ◽  
Vol 65 (11) ◽  
pp. 1363-1371 ◽  
Author(s):  
Christoph Wölper ◽  
Alejandra Rodríguez-Gimeno ◽  
Katherine Chulvi Iborra ◽  
Peter G. Jones ◽  
Armand Blaschette

Co-crystallization of N-methyl-substituted ureas with di(organosulfonyl)amines, (RSO2)2NH, leads unpredictably to either molecular co-crystals or, via proton transfer, to uronium salts. As a sequel to former reports, this communication describes the formation and the crystal structures of the new ionic compounds 1,1-dimethyluronium di(4-fluorobenzenesulfonyl)amide (1, monoclinic, space group P21/c, Z´ = 1) and di(1-methylurea)hydrogen(I) di(4-fluorobenzenesulfonyl)amide (2, triclinic, P1̄, Z´ = 1); both salts were obtained from dichloromethane/petroleum ether. In the structure of 2, the urea moieties of the cationic homoconjugate are connected by a very short [O-H· · ·O]+ hydrogen bond [d(O· · ·O) = 244.6(2) pm, θ (O-H· · ·O)≈170°, bridging H atom asymmetrically disordered over two positions]. The O-protonation induces a specific elongation of the C-O bond lengths to 131.2(2) pm in 1 or 129.5(2) and 127.4(2) pm in 2, as compared to literature data of ca. 126 pm for the unprotonated ureas. Both crystal structures are dominated by conventional two- and threecentre hydrogen bonds, which involve the OH and all NH donors and give rise to one-dimensional cation-anion arrays. In particular, the ionic entities of 1 are alternatingly associated into simple chains propagated by glide-plane operations parallel to the c axis, whereas the donor-richer structure of 2 displays inversion symmetric dimers of formula units, which are further hydrogen-bonded into strands propagated by translation parallel to the a axis.


1999 ◽  
Vol 52 (10) ◽  
pp. 983 ◽  
Author(s):  
Yang-Yi Yang ◽  
Seik Weng Ng ◽  
Xiao-Ming Chen

Three tetranuclear copper(II)–lanthanide(III) complexes of triphenylphosphoniopropionate (Ph3P+CH2CH2CO2−,tppp), namely [Cu2Ln2(tppp)8(H2O)8](ClO4)10·2H 2 O [Ln = EuIII, NdIII or CeIII], were synthesized and characterized by crystallography. The EuIII complex crystallizes in the triclinic space group P1 – with a 16.249(7), b 17.185(11), c 17.807(11) Å, α 69.750(10), β 89.230(10), γ 84.070(10)˚, V 4639(5) Å3, Z 1. In the crystal structures, four tppp ligands bridge a pair of CuII and tetraaquo-EuIII atoms (Cu···Eu 3.527(2) Å) through their µ2-carboxylato ends to form a dinuclear subunit; two of these subunits are additionally linked by one of the CuII -bonded carboxylato oxygen ends, across a centre of inversion, to furnish a dimeric tetranuclear [Cu(tppp)4 Eu(H2O)4]2 species (Cu···Cu 3.323(2) Å). This CuII -bonded oxygen atom occupies the apical site of the square-pyramidal coordination environment of the CuII atom. The EuIII atom is eight-coordinated in a square-antiprismatic geometry. The NdIII and CeIII complexes are isomorphous to the EuIII complex, and only minor differences in bond lengths and bond angles involving the metal atoms are noted.


2014 ◽  
Vol 70 (10) ◽  
pp. 998-1002 ◽  
Author(s):  
Mehrdad Pourayoubi ◽  
Atekeh Tarahhomi ◽  
Arnold L. Rheingold ◽  
James A. Golen

InN,N,N′,N′-tetraethyl-N′′-(4-fluorobenzoyl)phosphoric triamide, C15H25FN3O2P, (I), andN-(2,6-difluorobenzoyl)-N′,N′′-bis(4-methylpiperidin-1-yl)phosphoric triamide, C19H28F2N3O2P, (II), the C—N—C angle at each tertiary N atom is significantly smaller than the two P—N—C angles. For the other new structure,N,N′-dicyclohexyl-N′′-(2-fluorobenzoyl)-N,N′-dimethylphosphoric triamide, C21H33FN3O2P, (III), one C—N—C angle [117.08 (12)°] has a greater value than the related P—N—C angle [115.59 (9)°] at the same N atom. Furthermore, for most of the analogous structures with a [C(=O)NH]P(=O)[N(C)(C)]2skeleton deposited in the Cambridge Structural Database [CSD; Allen (2002).Acta Cryst.B58, 380–388], the C—N—C angle is significantly smaller than the two P—N—C angles; exceptions were found for four structures with theN-methylcyclohexylamide substituent, similar to (III), one structure with the seven-membered cyclic amide azepan-1-yl substituent and one structure with anN-methylbenzylamide substituent. The asymmetric units of (I), (II) and (III) contain one molecule, and in the crystal structures, adjacent molecules are linkedviapairs of N—H...O=P hydrogen bonds to form dimers.


1998 ◽  
Vol 53 (4) ◽  
pp. 503-506 ◽  
Author(s):  
Thomas Kräuter ◽  
Bernhard Neumüller

Single crystals of MesSn(Cl)Me2 (1) and Mes2SnCl2 (2) were obtained by the reactions of MesGaCl2 with Me3SnF and Mes3SnF, respectively. 1 and 2 are monomeric molecules in the solid state. 1: space group P21/n, Z = 4. lattice dimensions at -70°C: a = 1202,3(1), b = 739,1(1), c = 1441,3(1) pm , β = 102,71(1)°, R1 = 0,0469; 2: space group Pbcn, Z = 4, lattice dimensions at -50°C: a = 1107,0(2), b = 949,9(1), c = 1729,8(2) pm, R1= 0,049.


2017 ◽  
Vol 73 (6) ◽  
pp. 481-485 ◽  
Author(s):  
Marimuthu Mohana ◽  
Packianathan Thomas Muthiah ◽  
Colin D. McMillen

In solid-state engineering, cocrystallization is a strategy actively pursued for pharmaceuticals. Two 1:1 cocrystals of 5-fluorouracil (5FU; systematic name: 5-fluoro-1,3-dihydropyrimidine-2,4-dione), namely 5-fluorouracil–5-bromothiophene-2-carboxylic acid (1/1), C5H3BrO2S·C4H3FN2O2, (I), and 5-fluorouracil–thiophene-2-carboxylic acid (1/1), C4H3FN2O2·C5H4O2S, (II), have been synthesized and characterized by single-crystal X-ray diffraction studies. In both cocrystals, carboxylic acid molecules are linked through an acid–acid R 2 2(8) homosynthon (O—H...O) to form a carboxylic acid dimer and 5FU molecules are connected through two types of base pairs [homosynthon, R 2 2(8) motif] via a pair of N—H...O hydrogen bonds. The crystal structures are further stabilized by C—H...O interactions in (II) and C—Br...O interactions in (I). In both crystal structures, π–π stacking and C—F...π interactions are also observed.


1988 ◽  
Vol 66 (10) ◽  
pp. 2621-2630 ◽  
Author(s):  
Wolfgang Kliegel ◽  
Mahmood Tajerbashi ◽  
Steven J. Rettig ◽  
James Trotter

Details of the syntheses, physical properties, and crystal structures of the title compounds are reported. Crystals of 5,5-difluoro-2,2-pentamethylene-1,4,6-trioxa-3a-azonia-5-borata-1,2,3,4,5,6-hexahydrobenzo[h]azulene are triclinic, a = 6.1576(3), b = 11.2651(3), c = 10.8118(3) Å, α = 109.747(3), β = 105.807(4), γ = 92.976(4)°, Z = 2, space group [Formula: see text], and those of 2,2-pentamethylene-5,5-diphenyl-1,4,6-trioxa-3a-azonia-5-borata-1,2,3,4,5,6-hexahydrobenzo[h]azulene are monoclinic, a = 9.8549(6), b = 10.9242(6), c = 41.263(2) Å, β = 92.717(6)°, Z = 8, space group P21/n. Both structures were solved by direct methods and were refined by full-matrix least-squares procedures to R = 0.045 and 0.042 for 2344 and 4248 reflections with I ≥ 3σ(I), respectively. The molecules were both found to possess a seven-membered chelate structure, the O,O-chelatїng ligand being strongly bound to the X2B moiety. Two conformational isomers of the X = Ph compound were found in the solid state. The 2-oxazoline N-oxide moieties present in both compounds are the first to be structurally characterized. Important mean libration-corrected bond lengths are: O—B = 1.491 and F—B = 1.387 Å for X = F; O—B = 1.511 and C—B = 1.620 Å for X = Ph.


IUCrData ◽  
2017 ◽  
Vol 2 (5) ◽  
Author(s):  
Ryosuke Abe ◽  
Tsugiko Takase ◽  
Dai Oyama

Although in the title salt, C10H9N2+·CF3SO3−, the C—C and C—N bond lengths within the aromatic rings are normal, there is a considerable difference in the C—N—C angles at the protonated and unprotonated N atoms,viz. 123.42 (10) and 117.10 (11)°, respectively. Bifurcated N—H...X(X= N or O) hydrogen bonds form within the cation and between cation and anion. As a result, the cation exists in acisconformation in the solid state. An obvious π–π contact is also present between the non-protonated pyridyl rings of neighbouring cations.


IUCrJ ◽  
2015 ◽  
Vol 2 (5) ◽  
pp. 523-533 ◽  
Author(s):  
Mousumi Garai ◽  
Kumar Biradha

The homologous series of phenyl and pyridyl substituted bis(acrylamido)alkanes have been synthesized with the aim of systematic analysis of their crystal structures and their solid-state [2 + 2] reactivities. The changes in the crystal structures with respect to a small change in the molecular structure, that is by varying alkyl spacers between acrylamides and/or by varying the end groups (phenyl, 2-pyridyl, 3-pyridyl, 4-pyridyl) on the C-terminal of the amide, were analyzed in terms of hydrogen-bonding interference (N—H...NpyversusN—H...O=C) and network geometries. In this series, a greater tendency towards the formation of N—H...O hydrogen bonds (β-sheets and two-dimensional networks) over N—H...N hydrogen bonds was observed. Among all the structures seven structures were found to have the required alignments of double bonds for the [2 + 2] reaction such that the formations of single dimer, double dimer and polymer are facilitated. However, only four structures were found to exhibit such a solid-state [2 + 2] reaction to form a single dimer and polymers. The two-dimensional hydrogen-bonding layerviaN—H...O hydrogen bonds was found to promote solid-state [2 + 2] photo-polymerization in a single-crystal-to-single-crystal manner. Such two-dimensional layers were encountered only when the spacer between acryl amide moieties is butyl. Only four out of the 16 derivatives were found to form hydrates, two each from 2-pyridyl and 4-pyridyl derivatives. The water molecules in these structures govern the hydrogen-bonding networks by the formation of an octameric water cluster and one-dimensional zigzag water chains. The trends in the melting points and densities were also analyzed.


Sign in / Sign up

Export Citation Format

Share Document