Cerium intermetallics CeTX – review III

2016 ◽  
Vol 71 (3) ◽  
pp. 165-191 ◽  
Author(s):  
Rainer Pöttgen ◽  
Oliver Janka ◽  
Bernard Chevalier

AbstractThe structure–property relationships of CeTX intermetallics with structures other than the ZrNiAl and TiNiSi type are systematically reviewed. These CeTX phases form with electron-poor and electron-rich transition metals (T) and X = Mg, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, Sb, and Bi. The review focusses on the crystal chemistry, the chemical bonding peculiarities, and the magnetic and transport properties. Furthermore 119Sn Mössbauer spectroscopic data, high-pressure studies, hydrogenation reactions and the formation of solid solutions are reviewed. This paper is the third of a series of four reviews on equiatomic intermetallic cerium compounds [Part I: R. Pöttgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 289; Part II: R. Pöttgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 695].

2016 ◽  
Vol 71 (7) ◽  
pp. 737-764 ◽  
Author(s):  
Oliver Janka ◽  
Oliver Niehaus ◽  
Rainer Pöttgen ◽  
Bernard Chevalier

AbstractIntermetallic compounds with the equiatomic composition CeTX that crystallize with the orthorhombic TiNiSi-type structure can be synthesized with electron-rich transition metals (T) and X = Zn, Al, Ga, Si, Ge, Sn, As, Sb, and Bi. The present review focusses on the crystal chemistry and chemical bonding of these CeTX phases and on their physical properties, 119Sn and 121Sb Mössbauer spectra, high-pressure effects, hydrogenation reactions and the formation of solid solutions in order to elucidate structure–property relationships. This paper is the final one of a series of four reviews on equiatomic intermetallic cerium compounds [Part I: Z. Naturforsch. 2015, 70b, 289; Part II: Z. Naturforsch. 2015, 70b, 695; Part III: Z. Naturforsch. 2016, 71b, 165].


2015 ◽  
Vol 70 (5) ◽  
pp. 289-304 ◽  
Author(s):  
Rainer Pöttgen ◽  
Bernard Chevalier

AbstractEquiatomic CeTX intermetallics with the hexagonal ZrNiAl type structure are formed with electron-rich transition metals (T) and X = Mg, Zn, Cd, Al, Ga, In, Tl, Sn, and Pb. Their crystal chemistry, chemical bonding, magnetic and electrical properties, and formation of solid solutions are reviewed. The results of 119Sn Mössbauer spectroscopy, high-pressure studies, and hydrogenation reactions are presented.


2015 ◽  
Vol 70 (10) ◽  
pp. 695-704 ◽  
Author(s):  
Rainer Pöttgen ◽  
Bernard Chevalier

AbstractThe equiatomic CeXX′ phases (X and X′ = elements of the 3rd, 4th, or 5th main group) extend the large series of CeTX intermetallics (T = electron-rich transition metal). These phases crystallize with simple structure types, i.e. ZrNiAl, TiNiSi, CeScSi, α-ThSi2, AlB2, and GdSi2. In contrast to the CeTX intermetallics one observes pronounced solid solutions for the CeXX′ phases. The main influence on the magnetic ground states results from the absence of d electrons. All known CeXX′ phases show exclusively trivalent cerium and antiferro- or ferromagnetic ordering at low temperatures. The crystal chemical details and some structure-property relationships are reviewed.


Author(s):  
Francesca P. A. Fabbiani

High pressure has become an indispensable research tool in the quest for novel functional materials. High-pressure crystallographic studies on non-porous, framework materials based on coordination compounds are markedly on the rise, enabling the unravelling of structural phenomena and taking us a step closer to the derivation of structure–property relationships.


2012 ◽  
Vol 51 (19) ◽  
pp. 10402-10407 ◽  
Author(s):  
Seung-Jin Oh ◽  
Yiseul Shin ◽  
T. Thao Tran ◽  
Dong Woo Lee ◽  
Anne Yoon ◽  
...  

2020 ◽  
Author(s):  
Jack Yang

Formation of solid solutions with complex compositions has been exhaustively adopted in material research for improving chemical and physical properties. This is also the true for halide perovskites, in the hope of further enhancing their stabilities and reducing the toxicities in lead-containing compounds. Replacement of lead with tin, even partially, is a route to achieve the latter goal. However, this has to be compromised with reduction in band gaps as well as structural stabilities. High-throughput statistical samplings over different configurations for random solid solutions have played pivotal roles in guiding the chemical designs of halide perovskite with better stabilities while retaining high photovoltaic efficiencies, but it remains challenging to intuitively and comprehensively understand the intriguing energy-structure-property (ESP) relationships in solid solutions encompassing multiple degrees-of-freedoms. In this work, first--principle dynamic and electronic structure calculations are performed across 51 different compositions of Cs(Pb$_{x}$Sn$_{1-x}$)X$_{3}$ (X=Cl, Br and I), to systematically reveal the compositional and temperature dependent stabilities, vibrational anharmonicities and band gaps in solid solutions of halide perovskites. This is enabled, in particular, by applying a recently proposed `anharmonicity score' that provides a single numerical metric to characterise the structural dynamics in a multi-atomic system. Further combination with unsupervised machine-learning enable us to produce an ESP map to visually correlate the anharmonicity score with structural distortions and energies. However, temperature-dependent variations in band gap energies, which strongly depend on orbital interactions in metal-halide octrahedra, do not necessarily follow the same trend as anharmonicity scores. This work represents our latest developments in applying data--driven approach to establish ESP relationships for guiding the future designs of functional perovskites.


ChemInform ◽  
2012 ◽  
Vol 43 (51) ◽  
pp. no-no
Author(s):  
Seung-Jin Oh ◽  
Yiseul Shin ◽  
T. Thao Tran ◽  
Dong Woo Lee ◽  
Anne Yoon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document