Investigation of mesitylene-solvated group 13 mixed-metal halides: syntheses and crystal structures of bis(1,3,5-trimethylbenzene)gallium(I) tetrachlorido- and tetrabromidoaluminate(III) and (1,3,5-trimethylbenzene)gallium(I) tetraiodidoaluminate(III). Variation of the gallium-π-arene bond strength

2019 ◽  
Vol 74 (10) ◽  
pp. 773-782
Author(s):  
Luca Küppers ◽  
Walter Frank

AbstractBis(1,3,5-trimethylbenzene)gallium(I) tetra­chloridoaluminate(III), [(1,3,5-(CH3)3C6H3)2Ga][AlCl4] (1), bis(1,3,5-trimethylbenzene)gallium(I) tetrabromido­aluminate(III), [(1,3,5-(CH3)3C6H3)2Ga][AlBr4] (2) and (1,3,5-trimethylbenzene)gallium(I) tetraiodidoaluminate(III), [1,3,5-(CH3)3C6H3Ga][AlI4] (3) were synthesized from the corresponding subvalent GaI/AlIII mixed metal halides and characterized via C,H analysis, Raman spectroscopy, X-ray powder diffraction and X-ray single crystal diffraction. Compound 1 crystallizes in the noncentrosymmetric monoclinic space group Cc isotypic to [(1,3,5-(CH3)3C6H3)2Ga][GaCl4]. For 2 and 3 the monoclinic space group P21/n is found, however, they are neither isotypic nor homotypic. While 2 is isotypic to [(1,3,5-(CH3)3C6H3)2In][InBr4], 3 establishes a new structure type. In the solids of all three title compounds coordination polymeric chains are found, in 1 and 2 built up from bis(arene)-coordinated, in 3 from mono(arene)-coordinated Ga+ ions and the corresponding AlX4− anions in a 1κCl:2κCl′ (1), 1κCl,Cl′:2κCl″ (2) or 1κCl,Cl′:2κCl″:3κCl‴ (3) bridging mode. Taking into account the weaker coordinating character of the AlCl4− as compared to the AlBr4− anion, in line with expectations the number of gallium halogen contacts is increased and the strength of the π-arene bonding is reduced in the bromide 2 as compared to the chloride 1. Finally, with the even more strongly coordinating AlI4− anion the arene coordination is limited to one molecule. Considering mesitylene complexes of gallium, the formation of a mono(arene) complex is unprecedented and even considering group 13 elements in general, the formation of a mono(mesitylene) complex like 3 is unusual. Furthermore, compound 3 is the first structurally characterized arene solvate of a main group metal tetraiodidometallate.

2000 ◽  
Vol 78 (2) ◽  
pp. 280-290 ◽  
Author(s):  
Paul-Louis Fabre ◽  
Christophe Pena ◽  
Anne Marie Galibert ◽  
Brigitte Soula ◽  
Gérald Bernardinelli ◽  
...  

The compound (Ph4P)2(trans-cdcb)·2H2O (trans-cdcb2- = 2,4-bis(dicyanomethylene)-cyclobutane-1,3-dione dianion) has been synthesized and characterized by X-ray crystallography. Crystal data: triclinic, space group P1, a = 10.829(2) Å, b = 11.297(2) Å, c = 11.515(2) Å, α = 79.61(1)°, β = 68.54(1)°, γ = 63.49(1)°, V = 1172.9(4) Å3, Z = 1, R = 0.036, Rw = 0.047. With the dianion as a ligand, two complexes have been obtained and characterized by X-ray crystallography, UV-visible spectroscopy, and electrochemistry. The copper(II) complex [Cu(trans-cdcb)(H2O)4·2H2O]n consists of polymeric chains with copper atoms bonded to two of the nitrile groups of the ligand. Crystal data: monoclinic, space group P21/c, a = 9.6366(6) Å, b = 7.1292(3) Å, c = 10.7018(6) Å, β = 99.603(4)°, V = 724.92(7) Å3, Z = 2, R = 0.026, Rw = 0.041. The copper(I) complex[Cu2(trans-cdcb)(CH3CN)4·2CH3CN]n consists of polymeric chains with copper atoms bonded by all the four nitrile groups of the ligand. Crystal data: monoclinic, space group P21/n, a = 10.654(2) Å, b = 8.736(1) Å, c = 14.654(3) Å, β = 109.01(2)°, V = 1291.3(9) Å3, Z = 2, R = 0.037, Rw = 0.041. In CH3CN solution, the copper complexes are dissociated. Moreover, copper(II) is reduced into copper(I) by the dianion. Electrochemistry in the solid state (polymer coated electrode) showed the redox transitions of the different compounds.Key words: pseudo-oxocarbons, X-ray diffraction, copper(II) complex, copper(I) complex, electrochemical behaviour.


1997 ◽  
Vol 52 (10) ◽  
pp. 1278-1280 ◽  
Author(s):  
Max Herberhold ◽  
Silke Gerstmann ◽  
Wolfgang Milius ◽  
Bernd Wrackmeyer

The reaction of bis(triphenylstannyl)sulfur diimide 1 with water in CH2Cl2 provides an alternative route to bis(triphenylstannyl)sulfite 2, affording crystalline material suitable for X-ray structural analysis (monoclinic, space group P21/n). The sulfite 2 is monomeric in solution but forms polymeric chains in the solid state with both tetra- and penta-coordinate tin atoms.


1981 ◽  
Vol 36 (10) ◽  
pp. 1208-1210 ◽  
Author(s):  
Hartmut Köpf ◽  
Joachim Pickardt

Abstract The molecular structure of the bridged [1]-titanocenophane 1,1'-dimethylsilylene titanocene dichloride, (CH3)2Si(C5H4)2TiCl2, has been investigated by an X-ray structure determination. Crystal data: monoclinic, space group C2/c, Z = 4, a = 1332.9(3), 6 = 988.7(3), c = 1068.9(3) pm, β = 113.43(2)°. The results are compared with the structural dimensions of similar compounds: 1,1'-methylene titanocene dichloride, CH2(C5H4)TiCl2, with the unbridged titanocene dichloride, (C5H5)2TiCl2 and the ethylene-bridged compound (CH2)2(C5H4)2TiCl2


1995 ◽  
Vol 50 (7) ◽  
pp. 1018-1024 ◽  
Author(s):  
Axel Michalides ◽  
Dagmar Henschel ◽  
Armand Blaschette ◽  
Peter G. Jones

In a systematic search for supramolecular complexes involving all combinations of the cyclic polyethers 12-crown-4 (12C4), 15-crown-5 (15C 5), 18-crown-6 (18C 6) and dibenzo- 18-crown-6 (DB -18C6), and the geminal di- or trisulfones H2C(SO 2Me)2, H2C (SO2Et)2 and HC (SO2Me)3-n (SO2Et)n (n = 0 -3 ) , only the following four complexes could be isolated and unequivocally characterized by elemental analysis and 1H NMR spectroscopy: [(12C4){H2C (SO2Et)2}2] (3), [(18C6){H2C (S O2Me)2}] (4), [(DB -18C 6){H2C (SO2Et)2}] (5) and [(D B -18C 6)2{HC (SO2Me )(SO2Et)2}3] (6). The structure of 3 (triclinic, space group P1̄) consists of crystallographically centrosymmetric formula units, in which the disulfone molecules are bonded on each side of the ring by two C -H ··· O(crown) interactions originating from the central methylene group (H···O 213 pm) and from the methylene group of one EtSO2 moiety ( H ··· O 237 pm). Formula units related by translation are connected into parallel strands by a third type of reciprocal C -H ···O bond (H ···O 232 pm) between the second H atom of the central methylene group and a sulfonyl oxygen atom of the adjacent unit. The structure of 4 (monoclinic, space group C2/c) showed severe disorder of the crown ether and could not be refined satisfactorily. Compounds 5 and 6 crystallized as long and extremely thin fibres, indicative of linear-polymeric supramolecular structures; single crystals for X-ray crystallography were not available.


2020 ◽  
Vol 235 (8-9) ◽  
pp. 275-290
Author(s):  
Michael Schwarz ◽  
Pirmin Stüble ◽  
Katharina Köhler ◽  
Caroline Röhr

AbstractFour new mixed-valent chain alkali metal (A) sulfido ferrates of the general structure family ${A}_{1+x}\left[{\text{Fe}}_{x}^{\text{II}}{\text{Fe}}_{1-x}^{\text{III}}{\text{S}}_{2}\right]$ were synthesized in the form of tiny green-metallic needles from nearly stoichiometric melts reacting elemental potassium with natural pyrite (A = K) or previously prepared Rb2S/Cs2S2 with elemental iron and sulfur (A = Rb/Cs). The crystal structures of the compounds were determined by means of single crystal X-ray diffraction: In the (3+1)D modulated structure of K7.15[FeS2]4 (space group Ccce(00σ3)0s0, a = 1363.87(5), b = 2487.23(13), c = 583.47(3) pm, q = 0,0,0.444, R1 = 0.055/0.148, x = 0.787), a position modulation of the two crystallographically different undulated ${}_{\infty }{}^{1}\left[{\text{FeS}}_{4/2}\right]$ tetrahedra chains and the surrounding K cations is associated with an occupation modulation of one of the three potassium sites. In the case of the new monoclinic rubidium ferrate Rb4[FeS2]3 (x = $\frac{1}{3}$; space group P21/c, a = 1640.49(12), b = 1191.94(9), c = 743.33(6) pm, β = 94.759(4)°, Z = 4, R1 = 0.1184) the undulation of the tetrahedra chain is commensurate, the repetition unit consists of six tetrahedra. In the second new Rb ferrate, Rb7[FeS2]5 (x = 0.4; monoclinic, space group C2/c, K7[FeS2]5-type; a = 2833.9(2), b = 1197.36(9), c = 744.63(6) pm, β = 103.233(4)°, Z = 4, R1 = 0.1474) and its isotypic mixed Rb/Cs-analog Rb3.6Cs3.4[FeS2]5 (a = 2843.57(5), b = 1226.47(2), c = 759.890(10) pm, β = 103.7170(9)°, R1 = 0.0376) the chain buckling leads to a further increased repetition unit of 10 tetrahedra. For all mixed-valent ferrates, the Fe–S bond lengths continuously increase with the amount (x) of Fe(II). The buckling of the chains is controlled through the local coordination of the S atoms by the variable number of A cations of different sizes.


1992 ◽  
Vol 47 (3) ◽  
pp. 305-309 ◽  
Author(s):  
Anja Edelmann ◽  
Sally Brooker ◽  
Norbert Bertel ◽  
Mathias Noltemeyer ◽  
Herbert W. Roesky ◽  
...  

Abstract The Molecular Structures of [2,4,6-(CF3)3C6H2S]2 (1) [2,4,6-Me3C6H2Te]2 and [2-Me2N-4,6-(CF3)2C6H2Te]2 (3) have been determined by X-ray diffraction. Crystal data: 1: orthorhombic, space group P212121, Z = 4, a = 822.3(2), b = 1029.2(2), c = 2526.6(5) pm (2343 observed independent reflexions, R = 0.042); 2: orthorhombic, space group Iba 2, Z = 8, a = 1546.5(2), b = 1578.4(2), c = 1483.9(1) pm (2051 observed independent reflexions, R = 0.030); 3: monoclinic, space group P 21/c, Z = 4, a = 1118.7(1), b = 1536.5(2), c = 1492.6(2) pm, β = 98.97(1)° (3033 observed independent reflexions, R = 0.025).


2012 ◽  
Vol 67 (2) ◽  
pp. 127-22
Author(s):  
Anna J. Lehner ◽  
Korina Kraut ◽  
Caroline Röhr

Mixed sulfido/oxidomolybdate anions [MoOxS4−x]2− (x = 1, 2, 3) have been prepared by passing H2S gas through a solution of oxidomolybdates. The alkali salts of K+, Rb+, Cs+, and NH+4 precipitate as crystalline salts from these solutions depending on the pH, the polarity of the solvent, the educt concentrations and the temperature. Their structures have been determined by means of X-ray single-crystal diffraction data. All trisulfidomolybdates A2[MoOS3] (A = NH4/K/Rb/Cs) are isotypic with the tetrasulfido salts, exhibiting the β -K2[SO4] type (orthorhombic, space group Pnma, Z = 4; for A = Rb: a = 940.62(4), b = 713.32(4), c = 1164.56(5) pm, R1 = 0.0281). In contrast, the disulfidomolybdates exhibit a rich crystal chemistry, forming three different structure types depending on the preparation conditions and the size of the A cation: All four cations form salts crystallizing with the (NH4)2[WO2S2] structure type (monoclinic, space group C2/c, Z = 4, for A = Rb: a = 1144.32(11), b = 732.60(4), c = 978.99(10) pm, β = 120.324(7)°, R1 = 0.0274). For the three alkali metal cations a second polymorph with a new structure type (monoclinic, space group P21/c, Z = 4) is observed in addition (for A = Rb: a = 674.83(2), b = 852.98(3), c = 1383.10(9) pm, β = 115.19(1)°, R1 = 0.0216). The cesium salt also crystallizes with a third modification of another new structure type (orthorhombic, space group Pbcn, Z = 4, a = 915.30(6), b = 777.27(7), c = 1120.02(7) pm, R1 = 0.0350). Only for K, an anhydrous monosulfidomolybdate could be obtained (K2[MoO4] structure type, monoclinic, space group C2/m, Z = 4, a = 1288.7(3), b = 615.7(2), c = 762.2(1) pm, β = 109.59(1)°, R1 = 0.0736). The intramolecular chemical bonding in the molybdate anions is discussed and compared with the respective vanadates. Hereby aspects like bond lengths, bond strengths and force constants derived from Raman spectroscopy, are taken into account. Especially for the polymorphic disulfido salts, in-depth analyses of the local coordination numbers and the packing of the ions are presented. The gradual bathochromic shift of the crystal color with increasing S content and increasing size of the counter cations A and molar volumes (for the polymorphic forms), respectively, is in accordance with the increase of the experimental (UV/Vis spectroscopy) and calculated (FP-LAPW band structure theory) band gaps.


1983 ◽  
Vol 36 (11) ◽  
pp. 2333 ◽  
Author(s):  
B Kamenar ◽  
RA Pauptit ◽  
JM Waters

The X-ray crystal structure of 3α,4α:5β,6β-diepoxyandrostan-17-one has been determined. Crystals of the title compound (C19H26O3)are monoclinic, space group P21, with a 9.208(2), b 9.620(4), c 9.312(3) �, β 99.14(2)�, V 814.5 Ǻ3 and Z 2. The structure was solved by direct methods and refined to R 0.039 for 887 observed reflexions. The 3α,4α:5β,6β configuration of the epoxide rings confirms the assignment based on proton n.m.r. studies.


1988 ◽  
Vol 41 (3) ◽  
pp. 283 ◽  
Author(s):  
GB Robertson ◽  
PA Tucker

The structures of two crystalline modifications of mer -(Pme2Ph)3H-cis-Cl2IrIII, (1), have been determined from single-crystal X-ray diffraction data. Modification (A) is monoclinic, space group P21/c with a 12.635(1), b 30.605(3), c 14.992(2)Ǻ, β 110.01(2)° and Z = 8. Modification (B) is orthorhombic, space group Pbca with a 27.646(3), b 11.366(1), c 17.252(2)Ǻ and Z = 8. The structures were solved by conventional heavy atom techniques and refined by full-matrix least- squares analyses to conventional R values of 0.037 [(A), 8845 independent reflections] and 0.028 [(B), 5291 independent reflections]. Important bond lengths [Ǻ] are Ir -P(trans to Cl ) 2.249(1) av. (A) and 2.234(1) (B), Ir -P(trans to PMe2Ph) 2.339(2) av. (A) and 2.344(1), 2.352(1) (B), Ir-Cl (trans to H) 2.492(2), 2.518(2) (A) and 2.503(1) (B) and Ir-Cl (trans to PMe2Ph)2.452(2) av. (A) and 2.449(1)(B). Differences in chemically equivalent metal- ligand bond lengths emphasize the importance of non-bonded contacts in determining those lengths.


2005 ◽  
Vol 60 (9) ◽  
pp. 978-983 ◽  
Author(s):  
Sevim Hamamci ◽  
Veysel T. Yilmaz ◽  
William T. A. Harrison

Two new saccharinato-silver(I) (sac) complexes, [Ag(sac)(ampy)] (1), and [Ag2(sac)2(μ-aepy)2] (2), [ampy = 2-(aminomethyl)pyridine, aepy = 2-(2-aminoethyl)pyridine], have been prepared and characterized by elemental analysis, IR spectroscopy, thermal analysis and single crystal X-ray diffraction. Complexes 1 and 2 crystallize in the monoclinic space group P21/c and triclinic space group P1̄, respectively. The silver(I) ions in both complexes 1 and 2 exhibit a distorted T-shaped AgN3 coordination geometry. 1 consists of individual molecules connected into chains by N-H···O hydrogen bonds. There are two crystallographically distinct dimers in the unit cell of 2 and in each dimer, the aepy ligands act as a bridge between two silver(I) centers, resulting in short argentophilic contacts [Ag1···Ag1 = 3.0199(4) Å and Ag2···Ag2 = 2.9894(4) Å ]. Symmetry equivalent dimers of 2 are connected by N-H···O hydrogen bonds into chains, which are further linked by aromatic π(py)···π(py) stacking interactions into sheets.


Sign in / Sign up

Export Citation Format

Share Document