Salts of octabismuth(2+) polycations crystallized from Lewis-acidic ionic liquids

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Maximilian Knies ◽  
Michael Ruck

Abstract The reaction of Bi and BiCl3 with RbCl or CsCl in the Lewis-acidic ionic liquid (IL) [BMIm]Cl·4AlCl3 at T = 200 °C yielded air-sensitive, shiny black crystals. X-ray diffraction on single crystals revealed the hexagonal structures of two new salts (Bi8)M[AlCl4]3 (M = Rb, Cs), which are isostructural to the high-temperature form of (Bi8)Tl[AlCl4]3. The known (Bi8)2+ polycation is a square antiprism and can be interpreted as an arachno cluster following modified Wade rules. The crystal structure is a complex variant of the hexagonal perovskite structure type ABX 3 with A = (Bi8)2+, B = M + and X = [AlCl4]–. Chiral strands ∞ { M [ AlCl 4 ] 3 } 2 − ∞ 1 $\infty {}_{\infty }{}^{1}{\left\{M{\left[{\text{AlCl}}_{4}\right]}_{3}\right\}}^{2-}$ (M = Rb, Cs) run along [001]. The (Bi8)2+ polycations are only weakly coordinated inside a cage of 24 chloride ions and show dynamic rotational disorder at room temperature. Upon slow cooling to 170 K, the reorientation of the clusters was frozen, yet no long-range order was established.

2013 ◽  
Vol 457-458 ◽  
pp. 139-143 ◽  
Author(s):  
Ming Tian Wang ◽  
Chang Ping Pan ◽  
Wei Peng Gai ◽  
Xiao Xia Lv ◽  
Min Gang Zhai ◽  
...  

A series of novel acidic ionic liquid: 1-ethyl-2-alkyl-benzimidazolium tetra-fluoroborate (alkyl= Et, Pr-n, Bu-n) were prepared by simple acid-based neutralization of 1-ethyl-2-alkyl-benzimidazole and tetrafluoroboric acid. The compounds were characterized by FTIR spectra, elemental analysis,1HNMR spectra and thermogravimetric analysis. These novel tetra-fluoroborate salts show good catalytic activity to esterification of benzyl alcohol and acetic acid. Furthermore, a crystal of ([H-ebBiBF4) was prepared with the crystal structure and determined by X-ray diffraction analysis. The molecular is of lamellar structure as mainly π electron ring is stacked interleaving between two layers. The results of cation and anion arranged orderly in pair indicate that the coulombic attraction is more dominant. Simultaneously, the weak local hydrogen bonds C-H···F exist in the molecules.


2017 ◽  
Vol 73 (8) ◽  
pp. 600-608 ◽  
Author(s):  
Karolina Schwendtner ◽  
Uwe Kolitsch

The crystal structures of hydrothermally synthesized aluminium dihydrogen arsenate(V) dihydrogen diarsenate(V), Al(H2AsO4)(H2As2O7), gallium dihydrogen arsenate(V) dihydrogen diarsenate(V), Ga(H2AsO4)(H2As2O7), and diindium bis[dihydrogen arsenate(V)] bis[dihydrogen diarsenate(V)], In2(H2AsO4)2(H2As2O7)2, were determined from single-crystal X-ray diffraction data collected at room temperature. The first two compounds are representatives of a novel sheet structure type, whereas the third compound crystallizes in a novel framework structure. In all three structures, the basic building units areM3+O6octahedra (M= Al, Ga, In) that are connectedviaone H2AsO4−and two H2As2O72−groups into chains, and furtherviaH2As2O72−groups into layers. In Al/Ga(H2AsO4)(H2As2O7), these layers are interconnected by weak-to-medium–strong hydrogen bonds. In In2(H2AsO4)2(H2As2O7)2, the H2As2O72−groups link the chains in three dimensions, thus creating a framework topology, which is reinforced by weak-to-medium–strong hydrogen bonds. The three title arsenates represent the first compounds containing both H2AsO4−and H2As2O72−groups.


2020 ◽  
Vol 151 (9) ◽  
pp. 1317-1328
Author(s):  
Matthias Weil ◽  
Berthold Stöger

Abstract The caesium phosphates Cs3(H1.5PO4)2(H2O)2 and Cs3(H1.5PO4)2 were obtained from aqueous solutions, and Cs4P2O7(H2O)4 and CsPO3 from solid state reactions, respectively. Cs3(H1.5PO4)2, Cs4P2O7(H2O)4, and CsPO3 were fully structurally characterized for the first time on basis of single-crystal X-ray diffraction data recorded at − 173 °C. Monoclinic Cs3(H1.5PO4)2 (Z = 2, C2/m) represents a new structure type and comprises hydrogen phosphate groups involved in the formation of a strong non-symmetrical hydrogen bond (accompanied by a disordered H atom over a twofold rotation axis) and a very strong symmetric hydrogen bond (with the H atom situated on an inversion centre) with symmetry-related neighbouring anions. Triclinic Cs4P2O7(H2O)4 (Z = 2, P$$\bar{1}$$ 1 ¯ ) crystallizes also in a new structure type and is represented by a diphosphate group with a P–O–P bridging angle of 128.5°. Although H atoms of the water molecules were not modelled, O···O distances point to hydrogen bonds of medium strengths in the crystal structure. CsPO3 is monoclinic (Z = 4, P21/n) and belongs to the family of catena-polyphosphates (MPO3)n with a repetition period of 2. It is isotypic with the room-temperature modification of RbPO3. The crystal structure of Cs3(H1.5PO4)2(H2O)2 was re-evaluated on the basis of single-crystal X-ray diffraction data at − 173 °C, revealing that two adjacent hydrogen phosphate anions are connected by a very strong and non-symmetrical hydrogen bond, in contrast to the previously described symmetrical bonding situation derived from room temperature X-ray diffraction data. In the four title crystal structures, coordination numbers of the caesium cations range from 7 to 12. Graphic abstract


Author(s):  
Thu Hoai Le ◽  
Neil R. Brooks ◽  
Koen Binnemans ◽  
Bart Blanpain ◽  
Muxing Guo ◽  
...  

The title compound, Ca2+xNd8–x(SiO4)6O2–0.5x(x= 0.49), was synthesized at 1873 K and rapidly quenched to room temperature. Its structure has been determined using single-crystal X-ray diffraction and compared with results reported using neutron and X-ray powder diffraction from samples prepared by slow cooling. The single-crystal structure from room temperature data was found to belong to the space groupP63/mand has the composition Ca2.49Nd7.51(SiO4)6O1.75[dicalcium octaneodymium hexakis(orthosilicate) dioxide], being isotypic with natural apatite and the previously reported Ca2Nd8(SiO4)6O2and Ca2.2Nd7.8(SiO4)6O1.9. The solubility limit of calcium in the equilibrium state at 1873 K was found to occur at a composition of Ca2+xNd8–x(SiO4)6O2–0.5x, wherex= 0.49.


2014 ◽  
Vol 69 (3) ◽  
pp. 277-288 ◽  
Author(s):  
Rüdiger W. Seidel ◽  
Richard Goddard ◽  
Verena Gramm ◽  
Uwe Ruschewitz

2011The crystal structure of [Co(NH3)6](ADC)(HADC) · 2H2O (1) (ADC2- =acetylenedicarboxylate) (P21=n, Z = 4) was mistakenly described as containing the [Co(H2O)6]3+ ion [I. Stein, U. Ruschewitz, Z. Naturforsch. , 66b, 471 - 478]. A revision is reported. While attempting to reproduce 1, we isolated phase-pure crystalline material of [Co(NH3)6]Cl2(HADC) · H2O (2), the crystal structure of which was also reported in the article above. Upon standing in the aqueous mother liquor at room temperature for several days, the needle-shaped crystals of 2disappear, while blockshaped crystals of the formerly unknown compound [Co(NH3)6](ADC)(HADC) (3) grow. Satellite peaks in the X-ray diffraction frames indicate that the crystal structure is incommensurately modulated. Dissolving crystals of 3 in water at elevated temperature leads to plate-shaped crystals of the new compound [Co(NH3)6]2(ADC)3 · 3H2O (4) upon slow cooling to room temperature. Compounds 2- 4 were investigated by elemental analysis, powder X-ray diffraction and infrared spectroscopy. Structural characterization of 4 by single-crystal X-ray analysis was also achieved (P1̅ , Z = 2). Complex 1, however, could not be reproduced


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Maximilian Knies ◽  
Michael Ruck

Abstract The reaction of Bi, BiBr3, and CuBr in the Lewis-acidic ionic liquid [BMIm]Br·4AlBr3 (BMIm = 1-n-butyl-3-limidazolium) at 180 °C yielded air-sensitive, shiny black crystals of (CuBi8)[AlBr4]2[Al2Br7]. Crystals of [MBi10][AlCl4]4 (M = Pd, Pt) were obtained by reacting Bi, BiCl3, and MCl2 under similar conditions. The structures have been determined by X-ray diffraction on single-crystals and were found to be very similar to that of the known analogues with other halogens, although not isostructural. In crystals of the complex salts, polyhedral bimetallic clusters (CuBi8)3+ or [MBi10]4+ are embedded in matrices of halogenidoaluminate anions. The heteroatomic nido-cluster (CuBi8)3+ consists of a (Bi8)2+ square antiprism η4-coordinating a copper(I) cation. In the cluster cation [MBi10]4+, the metal atoms M center a pentagonal antiprism of bismuth atoms.


1984 ◽  
Vol 37 (4) ◽  
pp. 871 ◽  
Author(s):  
GA Bottomley ◽  
AM Carter ◽  
LM Engelhardt ◽  
FJ Lincoln ◽  
JM Patrick ◽  
...  

The crystal structure of the title compound, [C9H8NO]2[FeCl4]C1, has been determined by single-crystal X-ray diffraction methods at 295 K and refined by least squares to a residual of 0.043 for 2415 independent 'observed' reflections. Crystals are triclinic, P1, a 14.243(5), b 10.177(3), c 7.583(3) �, α 84.71(3), β 86.96(3), γ 86.50(3�, Z 2. The organic moiety is protonated at the nitrogen atom, with the discrete chloride ions hydrogen-bonded in lattice tunnels; this offers a rationale for the finite but small hydrogen chloride partial pressure at room temperature.


Author(s):  
Karolina Schwendtner ◽  
Uwe Kolitsch

The crystal structures of hydrothermally synthesized silver(I) aluminium bis[hydrogen arsenate(V)], AgAl(HAsO4)2, silver(I) gallium bis[hydrogen arsenate(V)], AgGa(HAsO4)2, silver gallium diarsenate(V), AgGaAs2O7, and sodium gallium diarsenate(V), NaGaAs2O7, were determined from single-crystal X-ray diffraction data collected at room temperature. The first two compounds are representatives of the MCV-3 structure type known for KSc(HAsO4)2, which is characterized by a three-dimensional anionic framework of corner-sharing alternatingM3+O6octahedra (M= Al, Ga) and singly protonated AsO4tetrahedra. Intersecting channels parallel to [101] and [110] host the Ag+cations, which are positionally disordered in the Ga compound, but not in the Al compound. The hydrogen bonds are relatively strong, with O...O donor–acceptor distances of 2.6262 (17) and 2.6240 (19) Å for the Al and Ga compounds, respectively. The two diarsenate compounds are representatives of the NaAlAs2O7structure type, characterized by an anionic framework topology built ofM3+O6octahedra (M= Al, Ga) sharing corners with diarsenate groups, andM+cations (M= Ag) hosted in the voids of the framework. Both structures are characterized by a staggered conformation of the As2O7groups.


Author(s):  
C. Wolpers ◽  
R. Blaschke

Scanning microscopy was used to study the surface of human gallstones and the surface of fractures. The specimens were obtained by operation, washed with water, dried at room temperature and shadowcasted with carbon and aluminum. Most of the specimens belong to patients from a series of X-ray follow-up study, examined during the last twenty years. So it was possible to evaluate approximately the age of these gallstones and to get information on the intensity of growing and solving.Cholesterol, a group of bile pigment substances and different salts of calcium, are the main components of human gallstones. By X-ray diffraction technique, infra-red spectroscopy and by chemical analysis it was demonstrated that all three components can be found in any gallstone. In the presence of water cholesterol crystallizes in pane-like plates of the triclinic crystal system.


Author(s):  
Naoki Yamamoto ◽  
Makoto Kikuchi ◽  
Tooru Atake ◽  
Akihiro Hamano ◽  
Yasutoshi Saito

BaZnGeO4 undergoes many phase transitions from I to V phase. The highest temperature phase I has a BaAl2O4 type structure with a hexagonal lattice. Recent X-ray diffraction study showed that the incommensurate (IC) lattice modulation appears along the c axis in the III and IV phases with a period of about 4c, and a commensurate (C) phase with a modulated period of 4c exists between the III and IV phases in the narrow temperature region (—58°C to —47°C on cooling), called the III' phase. The modulations in the IC phases are considered displacive type, but the detailed structures have not been studied. It is also not clear whether the modulation changes into periodic arrays of discommensurations (DC’s) near the III-III' and IV-V phase transition temperature as found in the ferroelectric materials such as Rb2ZnCl4.At room temperature (III phase) satellite reflections were seen around the fundamental reflections in a diffraction pattern (Fig.1) and they aligned along a certain direction deviated from the c* direction, which indicates that the modulation wave vector q tilts from the c* axis. The tilt angle is about 2 degree at room temperature and depends on temperature.


Sign in / Sign up

Export Citation Format

Share Document