Photoregulation of Carotenoid Biosynthesis in Mutants of Neurospora crassa: Activities of Enzymes Involved in the Synthesis and Conversion of Phytoene

1993 ◽  
Vol 48 (7-8) ◽  
pp. 570-574 ◽  
Author(s):  
Gerhard Sandmann

Synthesis of carotenoids is photoregulated in many fungi including Neurospora crassa. In order to investigate the regulatory mechanism at the enzyme level, several carotenoid mutants of Neurospora were used to determine the activities of enzymes involved in the carotenoid bio synthetic pathway after growth under illumination or in darkness. Light stimulation of carotenoid formation was due to enhanced activities of three subsequent enzymes, geranylgeranyl pyrophosphate synthase, phytoene synthase, and phytoene desaturase indicating a coordinated regulation at the enzyme level. Farnesyl pyrophosphate synthase and lycopene cyclase were not involved in light regulation. Immunological studies showed that in the case of phytoene desaturase higher activity in the light originated from an increased amount of this enzyme in light-grown cultures.

Genetics ◽  
2019 ◽  
Vol 212 (3) ◽  
pp. 691-710 ◽  
Author(s):  
Özlem Sarikaya Bayram ◽  
Anne Dettmann ◽  
Betim Karahoda ◽  
Nicola M. Moloney ◽  
Tereza Ormsby ◽  
...  

Neurospora crassa is an established reference organism to investigate carotene biosynthesis and light regulation. However, there is little evidence of its capacity to produce secondary metabolites. Here, we report the role of the fungal-specific regulatory velvet complexes in development and secondary metabolism (SM) in N. crassa. Three velvet proteins VE-1, VE-2, VOS-1, and a putative methyltransferase LAE-1 show light-independent nucleocytoplasmic localization. Two distinct velvet complexes, a heterotrimeric VE-1/VE-2/LAE-1 and a heterodimeric VE-2/VOS-1 are found in vivo. The heterotrimer-complex, which positively regulates sexual development and represses asexual sporulation, suppresses siderophore coprogen production under iron starvation conditions. The VE-1/VE-2 heterodimer controls carotene production. VE-1 regulates the expression of >15% of the whole genome, comprising mainly regulatory and developmental features. We also studied intergenera functions of the velvet complex through complementation of Aspergillus nidulans veA, velB, laeA, vosA mutants with their N. crassa orthologs ve-1, ve-2, lae-1, and vos-1, respectively. Expression of VE-1 and VE-2 in A. nidulans successfully substitutes the developmental and SM functions of VeA and VelB by forming two functional chimeric velvet complexes in vivo, VelB/VE-1/LaeA and VE-2/VeA/LaeA, respectively. Reciprocally, expression of veA restores the phenotypes of the N. crassa ve-1 mutant. All N. crassa velvet proteins heterologously expressed in A. nidulans are localized to the nuclear fraction independent of light. These data highlight the conservation of the complex formation in N. crassa and A. nidulans. However, they also underline the intergenera similarities and differences of velvet roles according to different life styles, niches and ontogenetic processes.


2007 ◽  
Vol 21 (4) ◽  
pp. 947-953 ◽  
Author(s):  
Gregory R. Armel ◽  
Patrick L. Rardon ◽  
Michael C. McComrick ◽  
Nancy M. Ferry

Greenhouse studies were conducted in 2003 at the Stine–Haskell Research Center to determine whether herbicide inhibitors of six specific sites in the carotenoid biosynthesis pathway would elicit synergistic responses when applied postemergence (POST) in combination with the photosystem II (PSII) inhibitor atrazine. Based on data analysis with the Isobole method, synergistic responses were observed on red morningglory, common cocklebur, and giant foxtail when atrazine was applied in mixtures with the deoxy-D-xylulose-5-phosphate reductoisomerase (DOXP reductoisomerase) inhibitor fosmidomycin, thep-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor mesotrione, and the DuPont proprietary zeta-carotene desaturase (ZDS) inhibitor DFPC. Clomazone (its metabolite ketoclomazone is the actual enzyme inhibitor), an inhibitor of 1-deoxy-D-xylulose-5-phosphate synthatase (DOXP synthase), provided synergistic responses on red morningglory, but antagonistic responses on both common cocklebur and giant foxtail when applied in mixtures with atrazine. Combinations of the lycopene cyclase (LC) inhibitor, CPTA, with atrazine produced synergistic responses on both common cocklebur and giant foxtail but were antagonistic on red morningglory. Norflurazon, a phytoene desaturase (PDS) inhibitor, applied in mixtures with atrazine provided synergistic responses on red morningglory, antagonistic responses on giant foxtail, and independent responses on common cocklebur. Because carotenoids have been determined to play a key role in quenching singlet oxygen species in the chloroplast and also assist in the maintenance of the D1 protein in PSII, this might help explain the synergistic responses with atrazine observed in our studies.


2019 ◽  
Vol 52 (3) ◽  
Author(s):  
Lin Yang ◽  
Jun Cheng Zhang ◽  
Wan Chen Li ◽  
Jing Tao Qu ◽  
Hao Qiang Yu ◽  
...  

Bone ◽  
2011 ◽  
Vol 48 (2) ◽  
pp. 259-266 ◽  
Author(s):  
Verena Stresing ◽  
Pierrick G. Fournier ◽  
Akeila Bellahcène ◽  
Ismahène Benzaïd ◽  
Hannu Mönkkönen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document