Photometrical Determination of the State-of-Charge in Vanadium Redox Flow Batteries Part I: In Combination with Potentiometric Titration

2019 ◽  
Vol 233 (12) ◽  
pp. 1683-1694 ◽  
Author(s):  
Jan Geiser ◽  
Harald Natter ◽  
Rolf Hempelmann ◽  
Bernd Morgenstern ◽  
Kaspar Hegetschweiler

AbstractThe stepwise oxidation of vanadium ions in electrolytes, as used in all vanadium redox flow batteries (VRFB), is studied offline by a combination of potentiometric titration and simultaneous UV/Vis/NIR spectroscopy. Eight different total vanadium concentrations between 0.2 mol L−1 and 1.6 mol L−1 have been investigated. The analyte (titrand, V2+ solution) is the anolyte (V2+/V3+ side) of a fully charged laboratory vanadium redox flow battery (VRFB). Absorption maxima are observed at λ = 850 nm for V2+ and at λ = 400 nm for V3+, the corresponding absorption coefficients are determined. In the former case an extrapolation procedure is necessary because during transfer from the VRFB to the titration cell, oxidation to V3+ by ambient oxygen cannot completely be avoided. Based on the knowledge of the absorption coefficients, via simultaneous photometry of V2+ and V3+, the state-of-charge of the anolyte of a VRFB can be determined. In the catholyte (V4+/V5+ side) of a VRFB the formation of an intermediate mixed valence VIV–VV complex at large vanadium concentration prevents a simple photometric SOC determination.

2014 ◽  
Vol 6 (20) ◽  
pp. 17920-17925 ◽  
Author(s):  
Chuankun Jia ◽  
Qi Liu ◽  
Cheng-Jun Sun ◽  
Fan Yang ◽  
Yang Ren ◽  
...  

2020 ◽  
Vol 27 ◽  
pp. 101066 ◽  
Author(s):  
Kyung-Hee Shin ◽  
Chang-Soo Jin ◽  
Jae-Young So ◽  
Se-Kook Park ◽  
Dong-Ha Kim ◽  
...  

2019 ◽  
Vol 41 (23) ◽  
pp. 1-9 ◽  
Author(s):  
Zhijiang Tang ◽  
Douglas S. Aaron ◽  
Alexander B. Papandrew ◽  
Thomas A. Zawodzinski

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 176
Author(s):  
Iñigo Aramendia ◽  
Unai Fernandez-Gamiz ◽  
Adrian Martinez-San-Vicente ◽  
Ekaitz Zulueta ◽  
Jose Manuel Lopez-Guede

Large-scale energy storage systems (ESS) are nowadays growing in popularity due to the increase in the energy production by renewable energy sources, which in general have a random intermittent nature. Currently, several redox flow batteries have been presented as an alternative of the classical ESS; the scalability, design flexibility and long life cycle of the vanadium redox flow battery (VRFB) have made it to stand out. In a VRFB cell, which consists of two electrodes and an ion exchange membrane, the electrolyte flows through the electrodes where the electrochemical reactions take place. Computational Fluid Dynamics (CFD) simulations are a very powerful tool to develop feasible numerical models to enhance the performance and lifetime of VRFBs. This review aims to present and discuss the numerical models developed in this field and, particularly, to analyze different types of flow fields and patterns that can be found in the literature. The numerical studies presented in this review are a helpful tool to evaluate several key parameters important to optimize the energy systems based on redox flow technologies.


2018 ◽  
Vol 165 (13) ◽  
pp. A3164-A3168 ◽  
Author(s):  
Noemí Aguiló-Aguayo ◽  
Thomas Bechtold

RSC Advances ◽  
2016 ◽  
Vol 6 (8) ◽  
pp. 6029-6037 ◽  
Author(s):  
Di Lu ◽  
Lele Wen ◽  
Feng Nie ◽  
Lixin Xue

A serials of imidazolium functionalized poly(arylene ether sulfone) as anion exchange membranes (AEMs) for all-vanadium redox flow battery (VRB) application are synthesized successfully in this study.


Sign in / Sign up

Export Citation Format

Share Document