Comparison ofin vitroactivity of ertapenem with other carbapenems against extended-spectrum beta-lactamase-producingEscherichia coliandKleibsellaspecies isolated in a tertiary children's hospital

2011 ◽  
Vol 12 (6) ◽  
pp. 845-849 ◽  
Author(s):  
Ilker Devrim ◽  
Gamze Gulfidan ◽  
İlker Gunay ◽  
Hasan Agın ◽  
Barış Güven ◽  
...  
2019 ◽  
Author(s):  
Karuna Kayastha ◽  
Binod Dhungel ◽  
Shovana Karki ◽  
Bipin Adhikari ◽  
Megha Raj Banjara ◽  
...  

Abstract Background Emergence of antibiotic resistance among pathogenic strains has spread due to production of β-lactamases, which can lead to failure of empirical therapy in clinical settings. Inappropriate use of antibiotics, particularly third generation cephalosporins has contributed to the development of antimicrobial resistance (AMR). This study aims to determine the prevalence of Extended Spectrum β-Lactamase (ESBL) production in E. coli and Klebsiella species isolated from various clinical samples. Methods This cross-sectional study was conducted at International Friendship Children's Hospital, Kathmandu, Nepal from August 2017 to January 2018. Various clinical samples that included urine, pus, Cerebro-Spinal Fluid (CSF), body fluids, wound swab, endotracheal tip, catheter tip and blood were processed for culture. Following sufficient incubation, isolates were identified by colony morphology, gram staining and necessary biochemical tests. Identified bacterial isolates were then tested for antibiotic susceptibility test by modified Kirby Bauer disc diffusion method, and were subjected to Extended Spectrum Beta Lactamase (ESBL) screening by using 30µg cefotaxime and ceftazidime. ESBL production was confirmed by combination disc method. Results From a total of 103 non-duplicated clinical isolates, E. coli (n=79), Klebsiella pneumoniae (n=18) and K. oxytoca (n=6) were isolated from different clinical specimens. Majority (62.1%; 64/103) exhibited Multi-Drug Resistance (MDR) and 28.2% (29/103) were ESBL producers. All of ESBL producing isolates were resistant towards ampicillin, cefotaxime, ceftriaxone, ceftazidime. Most ESBL producers were found to be susceptible towards imipenem (89.7%; 26/29), nitrofurantoin (82.8%; 24/29), piperacillin/tazobactam (79.3%; 23/29), and Amikacin (72.4%; 21/29). Conclusions High prevalence of multi-drug resistant ESBL organisms found in this study warrants restricting empirical treatment of the bacterial infection. Identification of ESBL producers in routine treatment of infectious diseases can reduce unnecessary and inappropriate antimicrobial use and can reduce the preventable morbidity and mortality.


Author(s):  
Shawnm Ahmed Aziz

Antibiotic resistance has become a major world health challenge and has limited the ability of physician's treatment. Staphylococcus aureus the most notorious pathogens causes morbidity and mortality especially in burn patients. However, Staphylococcus aureus rapidly acquired resistance to multiple antibiotics. Vancomycin, a glycopeptide antibiotic remains a drug of choice for treatment of severe Methicillin Resistance S. aureus infections. This study aimed to detect the emergence of beta-lactam and glycopeptide resistance genes. 50 clinical specimens of S. aureus collected from burn patients in burn and plastic surgery units in Sulaimani-Iraq city. All specimens were confirmed to be positive for S. aureus. All the isolates were assessed for their susceptibility to different antibiotics depending on NCCL standards, followed by Extended Spectrum Beta Lactamase detection by double disk diffusion synergy test. The production of β- lactamases was evaluated in the isolated strains by several routine methods and polymerase chain reaction. Among the isolates 94% were Methicillin resistance and 34.28% were Extended Spectrum Beta Lactamase producer. PCR based molecular technique was done for the bla genes related to β- lactamase enzymes by the specific primers, as well as genes which related to reduced sensitivity to Vancomycin were detected. The results indicated that all isolated showed the PBP1, PBP2, PBP3, PBP4, trfA and trfB, graSR, vraS except the vraR gene and the prolonged therapy of Methicillin resistance infection with teicoplanin have been associated with progress of resistance and the rise of tecoplanin resistance may be a prologue to evolving Vancomycin resistance. In conclusion, beta-lactam over taking can rise Vancomycin- Intermediate S. aureus strains leading to appearance of Vancomycin resistance although the treatment of Vancomycin resistant infections is challenging.


Sign in / Sign up

Export Citation Format

Share Document