Clinical pharmacology of antifungal agents to overcome drug resistance in pediatric patients

2015 ◽  
Vol 16 (2) ◽  
pp. 213-226 ◽  
Author(s):  
Theodouli Stergiopoulou ◽  
Thomas J Walsh
2007 ◽  
Vol 8 (15) ◽  
pp. 2465-2489 ◽  
Author(s):  
Christine C Chiou ◽  
Thomas J Walsh ◽  
Andreas H Groll

2020 ◽  
Vol 17 (6) ◽  
pp. 397-407
Author(s):  
Maryam Jarchi ◽  
Farah Bokharaei-Salim ◽  
Maryam Esghaei ◽  
Seyed Jalal Kiani ◽  
Fatemeh Jahanbakhsh ◽  
...  

Background: The advent of resistance-associated mutations in HIV-1 is a barrier to the success of the ARTs. Objective: In this study, the abundance of HIV-1 infection in Iranian children, and also detection of the TDR in naïve HIV-1 infected pediatric (under 12 years old) were evaluated. Materials: From June 2014 to January 2019, a total of 544 consecutive treatment-naïve HIV-1- infected individuals enrolled in this study. After RNA extraction, amplification, and sequencing of the HIV-1 pol gene, the DRM and phylogenetic analysis were successfully performed on the plasma specimens of the ART-naïve HIV-1-infected-children under 12 years old. The DRMs were recognized using the Stanford HIV Drug Resistance Database. Results: Out of the 544 evaluated treatment-naïve HIV-1-infected individuals, 15 (2.8%) cases were children under 12 years old. The phylogenetic analyses of the amplified region of pol gene indicated that all of the 15 HIV-1-infected pediatric patients were infected by CRF35_AD, and a total of 13.3% (2/15) of these children were infected with HIV-1 variants with SDRMs (one child harbored two related SDRMs [D67N, V179F], and another child had three related SDRMs [M184V, T215F, and K103N]), according to the last algorithm of the WHO. No PIs-related SDRMs were observed in HIV-1-infected children. Conclusion: The current study demonstrated that a total of 13.3% of treatment-naïve HIV-1-infected Iranian pediatrics (under 12 years old) were infected with HIV-1 variants with SDRMs. Therefore, it seems that screening to recognize resistance-associated mutations before the initiation of ARTs among Iranian children is essential for favorable medication efficacy and dependable prognosis.


Intervirology ◽  
2014 ◽  
Vol 57 (5) ◽  
pp. 297-299 ◽  
Author(s):  
Özlem Yoldaş ◽  
Ali Ağaçfidan ◽  
Nadine Lübke ◽  
Ayper Somer ◽  
Selda Hançerli ◽  
...  

2004 ◽  
Vol 48 (12) ◽  
pp. 4505-4512 ◽  
Author(s):  
Chia-Geun Chen ◽  
Yun-Liang Yang ◽  
Hsin-I Shih ◽  
Chia-Li Su ◽  
Hsiu-Jung Lo

ABSTRACT Overexpression of CDR1, an efflux pump, is one of the major mechanisms contributing to drug resistance in Candida albicans. CDR1 p-lacZ was constructed and transformed into a Saccharomyces cerevisiae strain so that the lacZ gene could be used as the reporter to monitor the activity of the CDR1 promoter. Overexpression of CaNDT80, the C. albicans homolog of S. cerevisiae NDT80, increases the β-galactosidase activity of the CDR1 p-lacZ construct in S. cerevisiae. Furthermore, mutations in CaNDT80 abolish the induction of CDR1 expression by antifungal agents in C. albicans. Consistently, the Candt80/Candt80 mutant is also more susceptible to antifungal drugs than the wild-type strain. Thus, the gene for CaNdt80 may be the first gene among the regulatory factors involved in drug resistance in C. albicans whose function has been identified.


2019 ◽  
Vol 62 (3) ◽  
Author(s):  
Israel Bonilla Landa ◽  
Osvaldo León De la Cruz ◽  
Diana Sánchez Rangel ◽  
Randy Ortiz Castro ◽  
Benjamin Rodriguez Haas ◽  
...  

Abstract. Fusarium Dieback, a new and lethal insect-vectored disease can host over 300 tree species including the avocado trees. This problem has recently attracted the attention of synthetic chemist not only to develop new triazol antifungal agents but also due to severe drug resistance to “classic” triazol antifungal agents. Here, a series of novel antifungal triazoles with a p-trifluoromethylphenyl moiety were synthesized and characterized by spectroscopic and spectrometric methods. Most of the target compounds synthesized showed from modest to good inhibitory activity and less phytotoxicity in comparison with the commercially available propiconazol; in particular, compounds 7 and 13 were active against both Fusarium solani and Fusarium euwallaceae. The results showed that compounds 7, 13, and 4 have great potential to be developed as new antifungal agents because of both good antifungal activity and low phytotoxicity. SAR showed that free alcohols and not O-protected compounds significantly influence the activity. Hence, a-methyl-a-1,2,4-triazole emerged as novel compound to develop new ketone-triazole-type antifungal agents for the management of Fusarium Dieback disease Resumen. Fusarium Dieback es una nueva enfermedad letal transmitida por insectos que actúan como vectores y puede atacar a más de 300 especies de árboles, incluidos los árboles de aguacate. Recientemente, este problema ha atraído la atención de los químicos sintéticos para desarrollar nuevos agentes antifúngicos triazólicos debido a la resistencia severa que desarrollan los insectos a los agentes antifúngicos triazólicos "clásicos". Durante este trabajo, se sintetizaron nuevos triazoles antifúngicos que contienen un grupo p-trifluorometilfenilo y se caracterizaron por métodos espectroscópicos y espectrométricos. La mayoría de los compuestos diana sintetizados mostraron una actividad inhibidora de modesta a buena y menos fitotoxicidad en comparación con el propiconazol que es comercialmente disponible; en particular, los compuestos 7 y 13 mostraron ser activos contra Fusarium solani y Fusarium euwallaceae. Los resultados mostraron que los compuestos 7, 13 y 4 tienen un gran potencial para desarrollarse como nuevos agentes antifúngicos debido a la buena actividad antifúngica y su baja fitotoxicidad. SAR mostró que los alcoholes libres y no los compuestos O-protegidos influyen significativamente en la actividad. Por lo tanto, el α-metil-α-1,2,4-triazol surgió como un nuevo compuesto líder para desarrollar nuevos agentes antifúngicos tipo cetona-triazol para el tratamiento de la enfermedad Fusarium Dieback.


1982 ◽  
Vol 57 (3) ◽  
pp. A415-A415 ◽  
Author(s):  
D. Ryan Cook ◽  
G. David Rudd ◽  
Barbara W. Brandom

2020 ◽  
Vol 22 (2) ◽  
pp. 199-216 ◽  
Author(s):  
Zaid H. Temrikar ◽  
Satyendra Suryawanshi ◽  
Bernd Meibohm

mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Dongxing Tian ◽  
Bingjie Wang ◽  
Hong Zhang ◽  
Fen Pan ◽  
Chun Wang ◽  
...  

ABSTRACT The continuous emergence of novel New Delhi metallo-β-lactamase-5 (NDM-5)-producing Enterobacteriaceae isolates is receiving more and more public attention. Twenty-two NDM-5-producing strains were identified from 146 carbapenemase-producing Enterobacteriaceae (CRE) strains isolated from pediatric patients between January and March 2017, indicating that the blaNDM-5 gene has spread to children. All 22 isolates, including 16 Klebsiella pneumoniae strains, four Klebsiella aerogenes strains, and two Escherichia coli strains, showed significantly high resistance to β-lactam antibiotics (except aztreonam) but remained susceptible to tigecycline and colistin. K. pneumoniae and K. aerogenes strains were respectively defined as homologous clonal isolates by pulsed-field gel electrophoresis (PFGE). Multilocus sequence typing (MLST) results confirmed the genetic relatedness with all K. pneumoniae strains belonging to sequence type (ST) 48. Two E. coli isolates (ST617 and ST1236) were considered genetically unrelated. Twenty-two blaNDM-5 plasmids were positive for the IncX3 amplicon and showed almost identical profiles after digestion with HindIII and EcoRI. Four representative strains (K. pneumoniae K725, K. aerogenes CR33, E. coli Z214, and E. coli Z244) were selected for further study. Plasmids harboring blaNDM-5 showed strong stability in both clinical isolates and transconjugants, without apparent plasmid loss after 100 serial generations. S1-PFGE followed by Southern blot analysis demonstrated that the blaNDM-5 gene was located on an ∼46-kb plasmid. Plasmid sequences of pNDM-K725, pNDM-CR33, and pNDM-Z214 were almost identical but were slightly different from that of pNDM-Z244. Compared with pNDM-Z244, ΔISAba125 and partial copies of IS3000 were missing. The genetic backgrounds of the blaNDM-5 gene in four strains were slightly different from that of the typical pNDM_MGR194. This study comprehensively characterized the horizontal gene transfer of the blaNDM-5 gene among different Enterobacteriaceae isolates in pediatric patients, and the IncX3-type plasmid was responsible for the spread. IMPORTANCE The emergence of CRE strains resistant to multiple antibiotics is considered a substantial threat to human health. Therefore, all the efforts to provide a detailed molecular transmission mechanism of specific drug resistance can contribute positively to prevent the further spread of multidrug-resistant bacteria. Although the new superbug harboring blaNDM-5 has been reported in many countries, it was mostly identified among E. coli strains, and the gene transfer mechanism has not been fully recognized and studied. In this work, we identified 22 blaNDM-5-positive strains in different species of Enterobacteriaceae, including 16 Klebsiella pneumoniae strains, four Klebsiella aerogenes strains, and two Escherichia coli strains, which indicated the horizontal gene transfer of blaNDM-5 among Enterobacteriaceae strains in pediatric patients. Moreover, blaNDM-5 was located on a 46-kb IncX3 plasmid, which is possibly responsible for this widespread horizontal gene transfer. The different genetic contexts of the blaNDM-5 gene indicated some minor evolutions of the plasmid, based on the complete sequences of the blaNDM-5 plasmids. These findings are of great significance to understand the transmission mechanism of drug resistance genes, develop anti-infection treatment, and take effective infection control measures.


Sign in / Sign up

Export Citation Format

Share Document