Excitatory amino acid transporters as potential drug targets

2009 ◽  
Vol 13 (6) ◽  
pp. 719-731 ◽  
Author(s):  
Lennart Bunch ◽  
Mette N Erichsen ◽  
Anders A Jensen
2014 ◽  
Vol 65 ◽  
pp. 69-81 ◽  
Author(s):  
Maxime Assous ◽  
Laurence Had-Aissouni ◽  
Paolo Gubellini ◽  
Christophe Melon ◽  
Imane Nafia ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yunlong Zhang ◽  
Feng Tan ◽  
Pingyi Xu ◽  
Shaogang Qu

Parkinson’s disease (PD) is the most common movement disorder disease in the elderly and is characterized by degeneration of dopamine neurons and formation of Lewy bodies. Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS). If glutamate is not removed promptly in the synaptic cleft, it will excessively stimulate the glutamate receptors and induce excitotoxic effects on the CNS. With lack of extracellular enzyme to decompose glutamate, glutamate uptake in the synaptic cleft is mainly achieved by the excitatory amino acid transporters (EAATs, also known as high-affinity glutamate transporters). Current studies have confirmed that decreased expression and function of EAATs appear in PD animal models. Moreover, single unilateral administration of EAATs inhibitor in the substantia nigra mimics several PD features and this is a solid evidence supporting that decreased EAATs contribute to the process of PD. Drugs or treatments promoting the expression and function of EAATs are shown to attenuate dopamine neurons death in the substantia nigra and striatum, ameliorate the behavior disorder, and improve cognitive abilities in PD animal models. EAATs are potential effective drug targets in treatment of PD and thus study of relationship between EAATs and PD has predominant medical significance currently.


PLoS ONE ◽  
2013 ◽  
Vol 8 (7) ◽  
pp. e70988 ◽  
Author(s):  
Ahmad Almilaji ◽  
Carlos Munoz ◽  
Tatsiana Pakladok ◽  
Ioana Alesutan ◽  
Martina Feger ◽  
...  

2017 ◽  
Vol 43 (5) ◽  
pp. 1907-1916 ◽  
Author(s):  
Birgitta C. Burckhardt ◽  
Gerhard Burckhardt

Background/Aims: Inborn deficiency of the N-acetylglutamate synthase (NAGS) impairs the urea cycle and causes neurotoxic hyperammonemia. Oral administration of N-carbamoylglutamate (NCG), a synthetic analog of N-acetylglutamate (NAG), successfully decreases plasma ammonia levels in the affected children. Due to structural similarities to glutamate, NCG may be absorbed in the intestine and taken up into the liver by excitatory amino acid transporters (EAATs). Methods: Using Xenopus laevis oocytes expressing either human EAAT1, 2, or 3, or human sodium-dependent dicarboxylate transporter 3 (NaDC3), transport-associated currents of NAG, NCG, and related dicarboxylates were assayed. Results: L-aspartate and L-glutamate produced saturable inward currents with Km values below 30 µM. Whereas NCG induced a small inward current only in EAAT3 expressing oocytes, NAG was accepted by all EAATs. With EAAT3, the NAG-induced current was sodium-dependent and saturable (Km 409 µM). Oxaloacetate was found as an additional substrate of EAAT3. In NaDC3-expressing oocytes, all dicarboxylates induced much larger inward currents than did L-aspartate and L-glutamate. Conclusion: EAAT3 may contribute to intestinal absorption and hepatic uptake of NCG. With respect to transport of amino acids and dicarboxylates, EAAT3 and NaDC3 can complement each other.


CNS Drugs ◽  
2020 ◽  
Vol 34 (11) ◽  
pp. 1089-1103 ◽  
Author(s):  
Aleksey V. Zaitsev ◽  
Ilya V. Smolensky ◽  
Pascal Jorratt ◽  
Saak V. Ovsepian

2019 ◽  
Vol 14 (4) ◽  
pp. 407
Author(s):  
Denis Shchepakin ◽  
Leonid Kalachev ◽  
Michael Kavanaugh

Excitatory Amino Acid Transporters (EAATs) operate over wide time scales in the brain. They maintain low ambient concentrations of the primary excitatory amino acid neurotransmitter glutamate, but they also seem to play a significant role in clearing glutamate from the synaptic cleft in the millisecond time-scale process of chemical communication that occurs between neurons. The detailed kinetic mechanisms underlying glutamate uptake and clearance remain incompletely understood. In this work we used a combination of methods to model EAAT kinetics and gain insight into the impact of transport on glutamate dynamics in a general sense. We derive reliable estimates of the turnover rates of the three major EAAT subtypes expressed in the mammalian cerebral cortex. Previous studies have provided transporter kinetic estimates that vary over an order of magnitude. The values obtained in this study are consistent with estimates that suggest the unitary transporter rates are approximately 20-fold slower than the time course of glutamate in the synapse. A combined diffusion/transport model provides a possible mechanism for the apparent discrepancy.


Sign in / Sign up

Export Citation Format

Share Document