On the anodic polarization of 316 steel in a choline chloride : ethylene glycol deep eutectic solvent and its impact on the surface topography and corrosion resistance

2021 ◽  
Vol 1 (1) ◽  
pp. 5-9
Author(s):  
JULIUSZ WINIARSKI
2016 ◽  
Vol 18 (3) ◽  
pp. 826-833 ◽  
Author(s):  
Xavier Marset ◽  
Juana M. Pérez ◽  
Diego J. Ramón

The synthesis of different tetrahydroisoquinolines using choline chloride : ethylene glycol as a deep eutectic solvent (DES) and copper(ii) oxide impregnated on magnetite as a catalyst has been accomplished successfully.


2019 ◽  
Vol 74 (2) ◽  
pp. 699-709 ◽  
Author(s):  
Azhar Y. M. Al-Murshedi ◽  
Ahmed Al-Yasari ◽  
Hasan F. Alesary ◽  
Hani K. Ismail

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 924 ◽  
Author(s):  
Juliusz Winiarski ◽  
Anna Niciejewska ◽  
Jacek Ryl ◽  
Kazimierz Darowicki ◽  
Sylwia Baśladyńska ◽  
...  

Cerium molybdenum oxide hydrate microflakes are codeposited with nickel from a deep eutectic solvent-based bath. During seven days of exposure in 0.05 M NaCl solution, the corrosion resistance of composite coating (Ni/CeMoOxide) is slightly reduced, due to the existence of some microcracks caused by large microflakes. Multielemental analysis of the solution, in which coatings are exposed and the qualitative changes in the surface chemistry (XPS) show selective etching molybdenum from microflakes. The amount of various molybdenum species within the surface of coating nearly completely disappear, due to the corrosion process. Significant amounts of Ce3+ compounds are removed, however the corrosion process is less selective towards the cerium, and the overall cerium chemistry remains unchanged. Initially, blank Ni coatings are covered by NiO and Ni(OH)2 in an atomic ratio of 1:2. After exposure, the amount of Ni(OH)2 increases in relation to NiO (ratio 1:3). For the composite coating, the atomic ratios of both forms of nickel vary from 1:0.8 to 1:1.3. Despite achieving lower corrosion resistance of the composite coating, the applied concept of using micro-flakes, whose skeleton is a system of Ce(III) species and active form are molybdate ions, may be interesting for applications in materials with potential self-healing properties.


Sign in / Sign up

Export Citation Format

Share Document