Specification for Large-Diameter Fabricated Carbon Steel Flanges

10.1520/f1311 ◽  
2008 ◽  
Author(s):  
Keyword(s):  
2021 ◽  
Author(s):  
Lam-Thanh Luc ◽  
Hamdi Saad ◽  
Matta Tanios ◽  
Dr. Al Bannay Aamer ◽  
Meer Mumtaz Ali Imtiaz Sirsimth ◽  
...  

Abstract In the wake of failures of large diameter pipelines made from plates using the Thermo-Mechanically Controlled Process (TMCP), the suitability of carbon steel material for sour environments where the H2S partial pressure is largely over 1 bar has been questioned. Understanding that seamless quench and tempered material are not prone to the same phenomenon as large diameter TMCP pipes, it has been decided to ensure the integrity of the DIYAB pipeline by qualification using the actual production environment pH=3.5 at 24°C and 6.84 bar H2S plus 6.84 bar CO2. The global approach includes the qualification to sour service resistance under 6.84bar H2S of the base material and the welds without post weld heat treatment. Fracture toughness tests under 6.84bar H2S were also conducted, and the results fed into an Engineering Criticality Assessment (ECA) to define the Non-Destructive Testing (NDT) acceptance criteria. The NDT tools were selected for their ability to detect the critical flaws and validated. The global approach methodology and results are presented.


1991 ◽  
Vol 113 (1) ◽  
pp. 149-151 ◽  
Author(s):  
K. Horii ◽  
Y. Matsumae ◽  
X. M. Cheng ◽  
M. Takei ◽  
E. Yasukawa ◽  
...  

A new 90-deg bend shape has been developed for erosion resistance. The design consists of a gradually expanding inlet, a large-diameter curved section, and a gradually contracting outlet. Tests were conducted using alumina particles in air at an average velocity of 27 m/s, passing through a carbon steel bend. The new bend design had an erosion life exceeding 4000 hr, compared to 38 hr for a conventional bend design.


Author(s):  
Y. L. Chen ◽  
J. R. Bradley

Considerable effort has been directed toward an improved understanding of the production of the strong and stiff ∼ 1-20 μm diameter pyrolytic carbon fibers of the type reported by Koyama and, more recently, by Tibbetts. These macroscopic fibers are produced when pyrolytic carbon filaments (∼ 0.1 μm or less in diameter) are thickened by deposition of carbon during thermal decomposition of hydrocarbon gases. Each such precursor filament normally lengthens in association with an attached catalyst particle. The subject of filamentous carbon formation and much of the work on characterization of the catalyst particles have been reviewed thoroughly by Baker and Harris. However, identification of the catalyst particles remains a problem of continuing interest. The purpose of this work was to characterize the microstructure of the pyrolytic carbon filaments and the catalyst particles formed inside stainless steel and plain carbon steel tubes. For the present study, natural gas (∼; 97 % methane) was passed through type 304 stainless steel and SAE 1020 plain carbon steel tubes at 1240°K.


Author(s):  
A. Yamada ◽  
A. Shibano ◽  
K. Harasawa ◽  
T. Kobayashi ◽  
H. Fukuda ◽  
...  

A newly developed digital scanning electron microscope, the JSM-6300, has the following features: Equipped with a narrower conical objective lens (OL), it allows high resolution images to be obtained easily at a short working distance (WD) and a large specimen tilt angle. In addition, it is provided with automatic functions and digital image processing functions for ease of operation.Conical C-F lens: The newly developed conical C-F objective lens, having low aberration characteristics over a wide WD range, allows a large-diameter (3-inch) specimen to be tilted up to 60° at short WD, and provides images with low magnifications starting at 10*. On the bottom of the lens, a p n junction type detector is provided to detect backscattered electrons (BE) from the specimen. As the narrower conical 0L increases the secondary electron (SE) detector's field intensity on the specimen surface, high SE image quality is obtained.


Sign in / Sign up

Export Citation Format

Share Document