Carbon Steel X65QS Pipeline Qualification for Extreme Sour Service a Global Approach: Line Pipe, Welding, Eca Methodology and Diyab Pipeline Case Study

2021 ◽  
Author(s):  
Lam-Thanh Luc ◽  
Hamdi Saad ◽  
Matta Tanios ◽  
Dr. Al Bannay Aamer ◽  
Meer Mumtaz Ali Imtiaz Sirsimth ◽  
...  

Abstract In the wake of failures of large diameter pipelines made from plates using the Thermo-Mechanically Controlled Process (TMCP), the suitability of carbon steel material for sour environments where the H2S partial pressure is largely over 1 bar has been questioned. Understanding that seamless quench and tempered material are not prone to the same phenomenon as large diameter TMCP pipes, it has been decided to ensure the integrity of the DIYAB pipeline by qualification using the actual production environment pH=3.5 at 24°C and 6.84 bar H2S plus 6.84 bar CO2. The global approach includes the qualification to sour service resistance under 6.84bar H2S of the base material and the welds without post weld heat treatment. Fracture toughness tests under 6.84bar H2S were also conducted, and the results fed into an Engineering Criticality Assessment (ECA) to define the Non-Destructive Testing (NDT) acceptance criteria. The NDT tools were selected for their ability to detect the critical flaws and validated. The global approach methodology and results are presented.

Author(s):  
Harpreet Sidhar ◽  
Neerav Verma ◽  
Chih-Hsiang Kuo ◽  
Michael Belota ◽  
Andrew J. Wasson

Abstract The oil and gas industry has seen unexpected failures of sour service carbon steel pipelines in the recent past. Below par performance of girth welds and line pipe material have been identified as the root causes of such failures. Although mechanized welding can achieve good consistency, the weld region is more heterogeneous as compared to base material, which can lead to inconsistencies and poor weld performance. Overall, the effects of welding parameters on performance of carbon steel pipeline girth welds for sour service are not well understood. Furthermore, industry is moving towards more challenging environments, such as production of hydrocarbons from ultra-deepwater, which further necessitates the need to improve welding practices for additional high criticality applications. Many of the critical parameters for sour service performance will also improve general weld performance for ultra-deepwater. So, there is a clear need to understand the effects of various welding parameters on weld properties and performance. This effort aims at assessing the effects of key welding parameters on performance of girth welds to develop improved welding practice guidelines for sour service pipeline applications. In this study, several API X65 grade line pipe girth welds were made using commercially available welding consumables. The effects on weld root performance of preheat, wire consumable chemistry, hot pass tempering, single vs. dual torch, copper backing, root pass heat input, metal transfer mode, pipe fit-up (root gap, misalignment) were studied. Generally, carbon steel welds with hardness 250HV or below are considered acceptable for sour service. So, detailed microhardness mapping and microstructural characterization were conducted to evaluate the performance and reliability of welds. It was evident that the welding parameters studied have a significant impact on root performance. Preheat and pipe fit-up showed the most significant impact on weld root performance. Based on the results and understanding developed with this study, recommendations for industry are provided through this paper to improve reliability of pipeline girth welds in sour service application.


2013 ◽  
Vol 753-755 ◽  
pp. 343-352
Author(s):  
Pin Yi Wang ◽  
Zong Yuan Mou

With the long-distance oil and gas pipelines are to development of the direction of large-diameter, high-pressure, high grade pipeline steel applications gradually become the trend of the development of the oil and gas pipeline construction. The welding process of the X100 line pipe which is about to industrial application is not yet to be determined. It is not clear that the affect to the weldability from the metallurgical composition, organization, performance, and other factors which would affect the site construction welding process and welding measures. In addition, it is not yet the discussion and analysis of the key technologies X100 line pipe-site welding process and defect types. In this paper, the X100 pipeline on-site application of welding technology research commenced work and studied the weldability and welding process of X100 which solve the field application of X100 pipeline steel pipe welding issues.


Author(s):  
Kenji Kobayashi ◽  
Tomohiko Omura ◽  
Nobuaki Takahashi ◽  
Izuru Minato ◽  
Akio Yamamoto

X70 grade large diameter UOE linepipe steel for sour service has been manufactured stably by optimizing the continuous casting process, controlling the shape of inclusions and decreasing coarse precipitates. It is confirmed that the HIC and SSC resistance are good enough for severe sour conditions to apply. These higher strength linepipe steels for sour service are useful for the offshore and deep-sea pipelines. Additional improvements of HIC and SSC resistances are needed for manufacturing thicker and higher strength UOE linepipe steels for sour service. Optimizing alloying elements and ACC process are very important for the additional improvements of HIC and SSC resistance. In addition, the HIC evaluation method should be revised in order to match applied field conditions.


2021 ◽  
Author(s):  
Harpreet Sidhar ◽  
Neerav Verma ◽  
Chih-Hsiang Kuo ◽  
Michael Belota ◽  
Andrew J. Wasson

Abstract In recent past, there have been unforeseen sour service pipeline failures in the oil and gas industry. Sub-optimal microstructure resulting in high hardness (above 250 HV10) in pipeline steel is one of the root causes of such failures. Poor girth weld quality is another leading cause which adversely affects pipeline integrity and safe operations in sour environments. While advancements in welding technologies have led to consistency in production girth welds, effects of welding parameters on performance of carbon steel pipeline girth welds for sour service are not well understood. So, a systematic study is needed to understand the effects of various welding parameters on weld properties and performance. This paper aims at evaluating the effects of various welding parameters on performance of girth welds to provide welding practice guidelines for sour service pipeline applications. In this effort, several welds on X65 grade line pipe girth welds using commercially available welding consumables were made to study the effects of preheat, hot pass tempering, copper backing, root pass heat input, wire consumable chemistry, single vs. dual torch, metal transfer mode, pipe fit-up (root gap, misalignment), on weld root performance. Detailed microhardness mapping and microstructural characterization were conducted. It was evident that the welding parameters studied have a significant impact on root performance. While preheat and pipe fit-up showed most significant impact on weld root performance, other parameters also affected the root performance by varying degree. Based on these results, recommendations for industry are provided to improve reliability of pipeline girth welds in sour service application.


Alloy Digest ◽  
2016 ◽  
Vol 65 (4) ◽  

Abstract Vallourec VM 85 13Cr (minimum yield strength 85 ksi, or 586 MPa) is a low alloy carbon steel for use in oil country tubular goods as a material suitable for sour service. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming. Filing Code: CS-198. Producer or source: Vallourec USA Corporation.


Alloy Digest ◽  
2016 ◽  
Vol 65 (3) ◽  

Abstract Vallourec VM 90 13CR (minimum yield strength 90 ksi, or 620 MPa) is a low alloy carbon steel for use in oil country tubular goods as a material suitable for sour service. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming. Filing Code: CS-197. Producer or source: Vallourec USA Corporation.


Alloy Digest ◽  
2015 ◽  
Vol 64 (5) ◽  

Abstract Sumitomo SM110XS is a low-alloy, high-strength carbon steel for use in oil country tubular goods as a material suitable for sour service. This datasheet provides information on physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming and heat treating. Filing Code: CS-188. Producer or source: Nippon Steel and Sumitomo Metal Corporation.


Author(s):  
Nuria Sanchez ◽  
Özlem E. Güngör ◽  
Martin Liebeherr ◽  
Nenad Ilić

The unique combination of high strength and low temperature toughness on heavy wall thickness coils allows higher operating pressures in large diameter spiral welded pipes and could represent a 10% reduction in life cycle cost on long distance gas pipe lines. One of the current processing routes for these high thickness grades is the thermo-mechanical controlled processing (TMCP) route, which critically depends on the austenite conditioning during hot forming at specific temperature in relation to the aimed metallurgical mechanisms (recrystallization, strain accumulation, phase transformation). Detailed mechanical and microstructural characterization on selected coils and pipes corresponding to the X80M grade in 24 mm thickness reveals that effective grain size and distribution together with the through thickness gradient are key parameters to control in order to ensure the adequate toughness of the material. Studies on the softening behavior revealed that the grain coarsening in the mid-thickness is related to a decrease of strain accumulation during hot rolling. It was also observed a toughness detrimental effect with the increment of the volume fraction of M/A (martensite/retained austenite) in the middle thickness of the coils, related to the cooling practice. Finally, submerged arc weldability for spiral welded pipe manufacturing was evaluated on coil skelp in 24 mm thickness. The investigations revealed the suitability of the material for spiral welded pipe production, preserving the tensile properties and maintaining acceptable toughness values in the heat-affected zone. The present study revealed that the adequate chemical alloying selection and processing control provide enhanced low temperature toughness on pipes with excellent weldability formed from hot rolled coils X80 grade in 24 mm thickness produced at ArcelorMittal Bremen.


2021 ◽  
Author(s):  
Niels Pörtzgen ◽  
Ola Bachke Solem

Abstract During the construction of pipelines for the transportation of oil and gas, the inspection of girth welds is a critical step to ensure the integrity and thereby the safety and durability of the pipeline. In this paper we present an advanced technology ‘IWEX’ for the non-destructive testing of welds based on 2D and 3D ultrasonic imaging. This technology allows for safe, fast, and accurate inspection whereby the results are presented comprehensively. This will be illustrated with results from a recent project. The IWEX technology is based on an ultrasonic inspection concept, whereby ‘fingerprints’ of ultrasonic signals are recorded, also referred to as ‘full matrix capture’ (FMC) data. Then, an image area is defined, consisting out of pixels over an area large enough to cover the inspection volume. With the FMC data, image amplitudes are calculated for each pixel so that the shape of geometry (back wall, front wall, cap, and root) and possible indications are revealed. As opposed to traditional ultrasonic testing strategies, the detection and sizing of indications is therefore less dependent on its orientation. The project concerned the inspection of J and V welds from a 5.56″ diameter carbon steel pipe with an 8.4mm wall thickness. The wall thickness is relatively thin compared to common inspection scopes. Therefore, the inspection set-up was adapted, and procedural changes were proposed. Consequently, additional validation efforts were required to demonstrate compliance with the required inspection standard; DNVGL-ST-F101: 2017. As part of this, welds were scanned with seeded indications and the reported locations were marked for macro slicing under witnessing of an independent representative from DNVGL. The resulting images from the indications in the welds showed great detail with respect to the position, orientation and height of the indications. A quantitative comparison with the results from the macro slices was performed, including a statistical analysis of the height sizing and depth positioning accuracies. From the analysis, it could be observed that the expected improvements with respect to the resolution and sizing accuracy were indeed achieved. Thereby, the procedure has proven to be adequate for the inspection of carbon steel girth welds within the thin wall thickness range (~6mm to ~15mm). The IWEX technology is a member of the upcoming inspection strategy based on imaging of ultrasonic FMC data. This strategy can be considered as the next step in the evolution of inspection strategies after phased array inspection. The IWEX technology has been witnessed and qualified by independent 3rd parties like DNVGL, this makes the IWEX technology unique in its kind and it opens opportunities for further acceptance in the industry and other inspection applications.


Sign in / Sign up

Export Citation Format

Share Document