Test Method for Air Cleaning Performance of a High-Efficiency Particulate Air Filter System

2000 ◽  
Author(s):  
Author(s):  
Thomas C. Gahr

Gas turbine output and mass flow have increased significantly over the years. The current generation of self cleaning air filter systems are large and complex, occupying a great deal of space, and requiring significant amounts of field assembly. A new filter technology developed for gas turbine intake air systems allows for the same high efficiency self cleaning performance to be achieved with a system that has a 40% smaller three dimensional footprint. This new corrugated flute filter media packaging technology not only reduces the size of the intake filter system, but can also reduce the complexity of the installation, shorten field installation time, and reduce the total cost of shipping by up to 50%. The key to this size reduction is a new way to package the filter media that allows for twice the airflow per filter at the same initial pressure loss and filtration efficiency as the current industry standard self cleaning filter systems. This paper will discuss the benefits of corrugated flute filter media packaging, and highlight the size reduction possible in the self cleaning air intake system. The resulting advantages are documented through laboratory and field experience.


Author(s):  
Oberst M ◽  
◽  
Klar T ◽  
Heinrich A ◽  
◽  
...  

Objective: Due to the airborne transmission of the Coronavirus Disease (Covid-19) via aerosols, we investigated the effect of a mobile air filter system in a surgical examination room. Methods: A mobile indoor air cleaner (AP 90, DEMA-airtech, Germany) was run during regular surgical consulting hour in our outpatient’s clinic. Aerosol concentration was measured by Fidas Frog fine dust monitoring system (Palas, Germany) by constantly recording PM1.0, PM2.5, PM4, PM10 and the total particle load PMtot. Results: The use of the air filter system led to a significant reduction of aerosols in the room despite the fact that there were various numbers of persons in the room constantly. Conclusion: The use of a high efficiency air filtration device, especially in examination rooms with poor ventilation, e.g., lack of windows or local exhaust is recommendable.


Author(s):  
Stian Madsen ◽  
Lars E. Bakken

Optimized operation of gas turbines is discussed for six LM2500PE engines at a Statoil North Sea offshore field. Three engines are generator drivers whilst three engines are compressor drivers. Two of the compressor drive engines are running at peak load (T5.4 control), hence the production rate is limited by the available power from these engines. All of the six engines discussed run continuously without redundancy, gas turbine uptime is therefore critical for the field’s production and economy. The performance and operational experience with upgraded inlet air filter systems and online water wash at high water-to-air ratio, as well as successful operation at longer intervals and higher average engine performance are described. For North Sea operation, a key property of the filter system is the ability to handle high humidity and high salt-content through the harsh environment in these waters. The upgraded filter systems analyzed in this paper is a 2-stage system (vane separator stage upstream of the high-efficiency-filter stage), which is a simplified design versus the old traditional 3-stage systems (louvre upstream and vane separator downstream of the filter stage). These 2-stage systems rely on an efficient upstream vane separator to remove the vast majority of water from the airflow before it reaches the high-efficiency filters. The high-efficiency filters are especially designed to withstand moisture. Deposit analysis from the downstream side of the filters has been performed. Extensive testing of both new and used filter elements, of different filter grade and operated at different intervals, has been performed on a filter test rig facility onshore. All six engines have historically been operated with 4-month intervals between maintenance stops. Online wash is performed daily between the maintenance stops at full load (i.e. normal operating load for the subject engine). As a result of successful development and pilot testing of new filters and optimized filter change intervals, as well as successful online water wash, the engine operating intervals are now extended to 6 months with very low deterioration rate. Understanding the gas turbine performance deterioration is of vital importance. Trending of its deviation from the engine baseline facilitates load-independent monitoring of the gas turbine’s condition. Instrument resolution and repeatability are key factors in order to get reasonable results from the performance analysis. Improvement of the package instrumentation has been implemented on three of the analyzed engines, for better performance monitoring. As a result of these analyses, a set of monitoring parameters is suggested for effective diagnostics of compressor degradation. Avenues for further research and development are proposed in order to further increase the understanding of the deterioration mechanisms and the gas turbine performance and response.


Machines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 4 ◽  
Author(s):  
Luqman S. Maraaba ◽  
Zakariya M. Al-Hamouz ◽  
Abdulaziz S. Milhem ◽  
Ssennoga Twaha

The application of line-start permanent magnet synchronous motors (LSPMSMs) is rapidly spreading due to their advantages of high efficiency, high operational power factor, being self-starting, rendering them as highly needed in many applications in recent years. Although there have been standard methods for the identification of parameters of synchronous and induction machines, most of them do not apply to LSPMSMs. This paper presents a study and analysis of different parameter identification methods for interior mount LSPMSM. Experimental tests have been performed in the laboratory on a 1-hp interior mount LSPMSM. The measurements have been validated by investigating the performance of the machine under different operating conditions using a developed qd0 mathematical model and an experimental setup. The dynamic and steady-state performance analyses have been performed using the determined parameters. It is found that the experimental results are close to the mathematical model results, confirming the accuracy of the studied test methods. Therefore, the output of this study will help in selecting the proper test method for LSPMSM.


Sign in / Sign up

Export Citation Format

Share Document