Strength and Toughness of a Metastable Beta-Titanium Alloy as Influenced by Strain Rate Variations

1976 ◽  
Vol 4 (5) ◽  
pp. 359 ◽  
Author(s):  
RL Meltzer ◽  
YR Fiorini ◽  
RT Horstman ◽  
IC Moore ◽  
AL Batik ◽  
...  
2021 ◽  
Vol 1035 ◽  
pp. 32-38
Author(s):  
Jing Li ◽  
Xin Nan Wang ◽  
Zhi Shou Zhu

The thermal deformation behavior of a new metastable beta titanium alloy composed of Ti-Al-Mo-V-Nb-Cr was studied under different experimental conditions of varying temperatures (760°C~ 970°C) and strain rates (0.001s−1, 0.01s−1, 0.1s−1, 1s−1 and 10s−1) up to deformation amount of 60%. The hot compression experiments were completed on a Gleeble-3500 thermal analogue. The experimental results showed that the true stress of the Ti-Al-Mo-V-Nb-Cr titanium alloy decreased with increasing the temperature and decreasing the strain rate, the stress peaks and the steady-state stress values were higher with the decreasing of temperature at the same strain rate. The calculated values of the deformation activation energy were 187.87 kJ/mol in the two-phase region and 165.17kJ/mol in beta single-phase region. The corresponding constitutive equation was determined by the multiple linear regression calculation on the hot compression experimental data, on the base of Arrhenius equations.


Sign in / Sign up

Export Citation Format

Share Document