microstructural characteristics
Recently Published Documents


TOTAL DOCUMENTS

1414
(FIVE YEARS 445)

H-INDEX

53
(FIVE YEARS 11)

2022 ◽  
Vol 320 ◽  
pp. 126302
Author(s):  
Christelle Nobouassia Bewa ◽  
Luca Valentini ◽  
Hervé Kouamo Tchakouté ◽  
Elie Kamseu ◽  
Jean Noël Yankwa Djobo ◽  
...  

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 531
Author(s):  
Samar Beaino ◽  
Peter El Hage ◽  
Rodolphe Sonnier ◽  
Sylvain Seif ◽  
Roland El Hage

This study highlights the synthesis of a new thermal insulating geopolymer based on the alkaline activation of fly ashes. A porous geopolymer material can be prepared without the addition of a foaming agent, using high ratio solution/ashes (activating solutions used are water, sodium or potassium hydroxide). In order to increase the porosity of the material and to make it more ecological, rice husks are incorporated into the formulation. The geopolymer materials were prepared at room temperature and dried at moderate temperature (105 °C) by a simple procedure. The microstructural characteristics of these new porous geopolymers were assessed by optical microscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and X-ray fluorescence (XRF). Infrared spectroscopy (FTIR) was used to confirm the geopolymerisation. The effect of the ratio solution/ashes and the percentage of the rice husk addition on thermal and mechanical analysis was evaluated. An insulating material for a solution/ashes ratio of 0.9 and a rice husk content of 15% having a λ value of 0.087 W/(m·K), a porosity of 61.4% and an Rc value of 0.1 MPa was successfully prepared.


Author(s):  
Dmytro Kosiachevskyi ◽  
Kamilia Abahri ◽  
Anne Daubresse ◽  
Evelyne Prat ◽  
Mohend Chaouche

The use of bio-based composites for building insulation is interesting from the point of view of hygrothermal performances, economic and environmental benefits. Among different organic fibers for these materials, hemp is interesting because of its huge availability in France. Nevertheless, the broad application of the hemp-based insulation mortars is hampered due to the lack of a database on their durability. This paper consists of a better understanding of the evolution of the hemp-based composite and its hygrothermal properties. The main objectives are, first, to study the evolution of the hemp insulation mortar microstructure and properties under the accelerated aging cycles, and second, to characterize and analyze the interconnection between observed changes. Experimentally, the protocol of accelerated aging inspired by standardized one was proposed, the microstructural characteristics and the hygrothermal properties, as the total porosity, the thermal conductivity, and the moisture buffer value (MBV) before and after the aging cycles was identified. The MBV characterization was performed for both hemp mortar and hemp shives. The obtained results reveal the increase of the hemp mortar porosity and the decrease of the hemp mortar's thermal conductivity. Furthermore, the MBV value of hemp mortar changes slightly, unlike that of the bulk hemp, which is explained by the mineral matrix's influence. These results consist of data for a better forecast on the degradation of the hemp mortar.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 101
Author(s):  
Farzad Badkoobeh ◽  
Hossein Mostaan ◽  
Mahdi Rafiei ◽  
Hamid Reza Bakhsheshi-Rad ◽  
Filippo Berto

Ferritic–martensitic dual-phase (DP) steels are prominent and advanced high-strength steels (AHSS) broadly employed in automotive industries. Hence, extensive study is conducted regarding the relationship between the microstructure and mechanical properties of DP steels due to the high importance of DP steels in these industries. In this respect, this paper was aimed at reviewing the microstructural characteristics and strengthening mechanisms of DP steels. This review article represents that the main microstructural characteristics of DP steels include the ferrite grain size (FGS), martensite volume fraction (MVF), and martensite morphology (MM), which play a key role in the strengthening mechanisms and mechanical properties. In other words, these can act as strengthening factors, which were separately considered in this paper. Thus, the properties of DP steels are intensely governed by focusing on these characteristics (i.e., FGS, MVF, and MM). This review article addressed the improvement techniques of strengthening mechanisms and the effects of hardening factors on mechanical properties. The relevant techniques were also made up of several processing routes, e.g., thermal cycling, cold rolling, hot rolling, etc., that could make a great strength–ductility balance. Lastly, this review paper could provide substantial assistance to researchers and automotive engineers for DP steel manufacturing with excellent properties. Hence, researchers and automotive engineers are also able to design automobiles using DP steels that possess the lowest fuel consumption and prevent accidents that result from premature mechanical failures.


Sign in / Sign up

Export Citation Format

Share Document