duplex aging
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 1)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 100
Author(s):  
Oleksandr Tisov ◽  
Magdalena Łępicka ◽  
Yurii Tsybrii ◽  
Alina Yurchuk ◽  
Myroslav Kindrachuk ◽  
...  

This study discusses the effect of a duplex aging + nitriding process on the wear resistance of an aged double-phase titanium alloy, BT22. Nitriding was applied simultaneously with the heat treatment of the alloy, which is advantageous over the conventional heat and surface treatment methods applied to titanium alloys. According to the results, the thickness of the case depth of the nitrided samples was 40–50 μm. Moreover, nitrogen was uniformly dispersed in the substrate, which was indicated by the hardness tests. The average microhardness of the substrate material was 300 HV0.01, while the hardness of the top layer was 1190 HV0.01, which is an almost four-fold increase. The applied duplex treatment substantially affected the wear performance of the tested alloy. For the untreated alloy, the maximum coefficient of friction was 0.8, while in the surface-modified sample, the maximum fluctuations reached 0.6. The abrasive wear process was dominant in the nitrided samples, while delamination and adhesive wear were observed for the untreated specimens. The nitrided alloy exhibited double the wear resistance of the untreated samples. The proposed treatment does not require additional time or energy consumption, providing a substantial technological advantage over conventional methods. Though the alpha case reduces the mechanical performance of titanium, the nitriding of only the component sections intended to withstand friction will have a positive effect.


2019 ◽  
Vol 754 ◽  
pp. 702-707 ◽  
Author(s):  
Zhaoxin Du ◽  
Yan Ma ◽  
Fei Liu ◽  
Xueping Zhao ◽  
Yanfei Chen ◽  
...  

2018 ◽  
Vol 37 (5) ◽  
pp. 487-493 ◽  
Author(s):  
Zhang Lincai ◽  
Ding Xiaoming ◽  
Ye Wei ◽  
Zhang Man ◽  
Song Zhenya

AbstractAs a special hardenable α titanium alloy, Ti-2.5 Cu alloy was a candidate material for high temperature components requiring high strength and plasticity. The effect of prestrain on the precipitation behaviors was investigated in the present study. Tensile tests show that elongation up to 22 % can be obtained after solid solution (SS) treatment. Thereafter, prestrain in tension with 5 %, 10 %, 15 % and 20 % was carried out for the SS samples and then duplex aging was applied. Transmitting electron microscopy (TEM) investigations show that larger Ti2Cu particles were observed in the prestrained condition than free aging one, as prestrain significantly speeds up the precipitation kinetics. The strength firstly increases and then decreases for the prestrained samples after duplex aging, where the competition between precipitation hardening and recovery softening should be responsible. With the consideration of SS, precipitation and recovery, a strength model for duplex aging combined with prestrain was established, which is in well agreement with experiments. Present study may provide a promising way to obtain the strength of deformed hcp materials in industry application.


2011 ◽  
Vol 528 (28) ◽  
pp. 8060-8064 ◽  
Author(s):  
Yao Li ◽  
Zhiyi Liu ◽  
Song Bai ◽  
Xuanwei Zhou ◽  
Heng Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document