Method Development for the Determination of Formaldehyde in Samples of Environmental Origin

Author(s):  
MKL Bicking ◽  
WM Cooke ◽  
FK Kawahara ◽  
JE Longbottom
Keyword(s):  
2012 ◽  
Vol 2 (2) ◽  
pp. 364-367 ◽  
Author(s):  
Saida Naik Dheeravath ◽  
◽  
Kasani Ramadevi ◽  
Zilla Saraswathi ◽  
Dheeravath Maniklal ◽  
...  

2020 ◽  
Vol 16 (6) ◽  
pp. 774-781
Author(s):  
Liang Wu ◽  
An Kang ◽  
Yujie Lin ◽  
Chenxiao Shan ◽  
Zhu Zhou ◽  
...  

Background: Ilexsaponin A1, one of the most representative triterpene saponin components in the roots of I. pubescens, showed its effects in anticoagulation and antithrombosis, attenuating ischemia-reperfusion-induced myocardial, angiogenesis and inhibiting phosphodiesterase. Objective: Reveal the key intestinal bacterial strains responsible for ilexsaponin A1 metabolism, and clarify their metabolic behavior. Methods: An accurate and sensitive LC-MS/MS method for the determination of “ilexsaponin A1 in General Anaerobic Medium (GAM) broth” was established and systematically validated. Then it was applied to screen and study the metabolic potential of the intestinal bacterial strains in an anaerobic incubation system. Results: Quantitation of ilexsaponin A1 could be performed within an analytical run time of 14.5 min, in the linear range of 2 - 2000 ng/ml. Enterobacter sakazakii, Bifidobacterium breve, Bifidobacterium adolescentis, Bifidobacterium catenulatum, and Bifidobacterium angulatum were identified to have a potential effect to metabolize ilexsaponin A1 to different extents; and further bacterial metabolic studies were performed to clarify their metabolic capacity and behavior. Conclusion: This paper contributes to a better understanding of the intestinal bacterial metabolism of ilexsaponin A1 and provides scientific evidence for its clinical application. Additionally, the importance of intestinal bacterial strains in the disposition of natural products was also highlighted.


2019 ◽  
Vol 15 (7) ◽  
pp. 788-800 ◽  
Author(s):  
Natasa P. Kalogiouri ◽  
Victoria F. Samanidou

Background:The sample preparation is the most crucial step in the analytical method development. Taking this into account, it is easily understood why the domain of sample preparation prior to detection is rapidly developing. Following the modern trends towards the automation, miniaturization, simplification and minimization of organic solvents and sample volumes, green microextraction techniques witness rapid growth in the field of food quality and safety. In a globalized market, it is essential to face the consumers need and develop analytical methods that guarantee the quality of food products and beverages. The strive for the accurate determination of organic hazards in a famous and appreciated alcoholic beverage like wine has necessitated the development of microextraction techniques.Objective:The objective of this review is to summarize all the recent microextraction methodologies, including solid phase extraction (SPE), solid phase microextraction (SPME), liquid-phase microextraction (LPME), dispersive liquid-liquid microextraction (DLLME), stir bar sorptive extraction (SBSE), matrix solid-phase dispersion (MSPD), single-drop microextraction (SDME) and dispersive solid phase extraction (DSPE) that were developed for the determination of hazardous organic compounds (pesticides, mycotoxins, colorants, biogenic amines, off-flavors) in wine. The analytical performance of the techniques is evaluated and their advantages and limitations are discussed.Conclusion:An extensive investigation of these techniques remains vital through the development of novel strategies and the implication of new materials that could upgrade the selectivity for the extraction of target analytes.


2019 ◽  
Vol 15 (5) ◽  
pp. 591-598 ◽  
Author(s):  
Haitham Alrabiah ◽  
Ahmed Bakheit ◽  
Sabray Attia ◽  
Gamal A.E. Mostafa

Background: Conivaptan inhibits two of vasopressin receptor (vasopressin receptor V1a and V2). Conivaptan is used for the treatment of hyponatremia, and in some instances, for the treatment of the heart failure. Methods: The present study aimed to develop a simple, sensitive, and accurate HPLC with ultraviolet detection for the assay of conivaptan (CON) in mouse plasma using bisoprolol as internal standard (IS). A precipitation procedure was used to extract CON and the IS from the mouse plasma. CON was chromatographically separated using a C18 analytical column at 25°C. The separation was carried out using a mixture of phosphate buffer (50 mM): acetonitrile (60: 40, v/v, pH 4.5) with a flow rate of 1.0 mL/min and detection was performed at 240 nm. Results: The assay was validated according to the US Food and Drug (FDA) guidelines. The method demonstrated linearity over a concentration range of 150 - 2000 ng/mL (correlation coefficient: r 2 = 0.9985). The mean recovery of CON from the mouse plasma was 101.13%. All validation parameters for CON were within the acceptable range. Conclusion: The investigated method has been shown to be suitable for estimating the CON in plasma samples, and this method is sensitive and highly selective, allowing the estimation of its concentrations up to the nano-scale. The suggested method was successfully used in a pharmacokinetic study of CON in mouse plasma.


Sign in / Sign up

Export Citation Format

Share Document