Pennsylvania's Experience in the Compaction of Asphalt Pavements

2008 ◽  
pp. 93-93-14 ◽  
Author(s):  
PS Kandhal ◽  
WC Koehler
Keyword(s):  
CICTP 2020 ◽  
2020 ◽  
Author(s):  
Yan Li ◽  
Yanlong Han ◽  
Yuanbo Cao ◽  
Jiupeng Zhang ◽  
Fuyu Wang ◽  
...  

Author(s):  
Kyle Hoegh ◽  
Trevor Steiner ◽  
Eyoab Zegeye Teshale ◽  
Shongtao Dai

Available methods for assessing hot-mix-asphalt pavements are typically restricted to destructive methods such as coring that damage the pavement and are limited in coverage. Recently, density profiling systems (DPS) have become available with the capability of measuring asphalt compaction continuously, giving instantaneous measurements a few hundred feet behind the final roller of the freshly placed pavement. Further developments of the methods involved with DPS processing have allowed for coreless calibration by correlating dielectric measurements with asphalt specimens fabricated at variable air void contents using superpave gyratory compaction. These developments make DPS technology an attractive potential tool for quality control because of the real-time nature of the results, and quality assurance because of the ability to measure a more statistically significant amount of data as compared with current quality assurance methods such as coring. To test the viability of these recently developed methods for implementation, multiple projects were selected for field trials. Each field trial was used to assess the coreless calibration prediction by comparing with field cores where dielectric measurements were made. Ground truth core validation on each project showed the reasonableness of the coreless calibration method. The validated dielectric to air void prediction curves allowed for assessment of the tested pavements in relation to as-built characteristics, with the DPS providing the equivalent of approximately 100,000 cores per mile. Statistical measures were used to demonstrate how DPS can provide a comprehensive asphalt compaction evaluation that can be used to inform construction-related decisions and has potential as a future quality assurance tool.


Author(s):  
Biao Ma ◽  
Yongping Hu ◽  
Fangshu Liu ◽  
Wei Si ◽  
Kun Wei ◽  
...  

2006 ◽  
Vol 132 (3) ◽  
pp. 240-249 ◽  
Author(s):  
William G. Buttlar ◽  
Glaucio H. Paulino ◽  
Seong Hyeok Song

2003 ◽  
Vol 1853 (1) ◽  
pp. 143-149 ◽  
Author(s):  
Shane Underwood ◽  
Y. Richard Kim

Nondestructive measurement of crack depths of asphalt pavements in situ could be a valuable tool for engineers in rehabilitation planning. Such measurements currently must be made by first coring or trenching a pavement and then measuring the crack by hand. Two methods for performing this task nondestructively are presented. The two methods, surface wave and ultrasonic, use the slowing effect that a crack has on a wave. Two signal-processing techniques were used to analyze the surface wave method—the fast Fourier transform (FFT) and the short kernel method (SKM). The FFT method provided a frequency spectrum that was used to find the energy carried by specific frequencies. The percent energy reduction (PER) was computed and plotted at each crack depth; this plot revealed that PER values increase as crack depth increases. The SKM method showed the wave velocity to decrease as the crack depth in creased. By comparing the wave velocity of the cracked pavement with that of the undamaged pavement, a phase velocity ratio plot was developed and was shown to be adequate for predicting crack depth. Ultrasonic testing proved to be a simpler and more direct method than surface wave testing. It was not necessary to know the wave properties of an undamaged pavement with this method, and a quantitative prediction of crack depth was obtained. While encouraging results were observed with both methods, ultrasonic testing showed the most promise for application because of the commercial availability of ultrasonic meters and the direct prediction of crack depth.


Sign in / Sign up

Export Citation Format

Share Document