scholarly journals Green infrastructure-based hydrological modelling, a comparison between different urban districts, through the case of Szeged, Hungary

2021 ◽  
Vol 70 (4) ◽  
pp. 353-368
Author(s):  
Ákos Kristóf Csete ◽  
◽  
Ágnes Gulyás ◽  

Because of the climate uncertainties caused by climate change and the growing urban areas, today’s cities face new environmental challenges. The impervious artificial elements change the urban water cycle. Urban districts with inadequate water infrastructure and treatment can be a major source of environmental risks, like urban flash floods. Modern cities need to be prepared for the changing environment in a sustainable way, which can be realised with the help of green infrastructure. The primary role of the green infrastructure is mitigation, such as surface runoff reduction and retainment. The aim of our research is to examine urban district scale data about the role of green infrastructure in urban water management. Hydrological models can provide adequate data about the surface runoff, infiltration and the mitigating effect of vegetation (interception and evaporation). We compared two significantly different urban districts (downtown and housing estate area), based on land cover and vegetation data. The analysis of the districts of Szeged (Hungary) suggests that the vegetation can significantly contribute to the reduction of surface runoff. Differences between these urban districts can be quantified, thus, these data can serve as a basis for urban water management planning processes.

2020 ◽  
Author(s):  
Ágnes Gulyás ◽  
Ákos Csete

<p>Due to the climate change caused uncertainty, the urban areas face new challenges. In addition to mitigating the negative effects, it is important the developments need to implemented in a sustainable manner. The problem of urban areas is substantial on account of their growing spatial size and population, furthermore the inadequate infrastructure. Urban districts with inadequate infrastructure can be a major source of water pollution, but also have a significant impact on the well-being of the citizens. In modern urban planning the sustainable urban water management based on the usage of green infrastructure. Green infrastructure is an important tool to make urban water cycle sustainable by linking artificial, engineered elements (gray infrastructure) with the services provided by vegetation. Green infrastructure can help to make the urban water cycle sustainable in many ways. Its primary role is the mitigating effect, such as reducing and retaining surface runoff with the process of interception and evaporation. Due to the complex structure of vegetation, it can also play an important role in infiltration (by root system), thus also reducing surface runoff.</p><p>Providing adequate data on the role of green infrastructure <strong>–</strong> even on a city-wide scale <strong>–</strong> can help decision makers. To accomplish this, hydrological models can play an important role. If these models (i-Tree Hydro) based on appropriate meteorological and land cover data, they can help to estimate the runoff and infiltration of study areas and the reducing effect of vegetation (interception, evaporation). In our study, we attempted to compare two significantly different urban district based on these aspects and to analyze the differences. Analyzes in the two study areas of Szeged (Hungary) all suggest the vegetation can significantly contribute to the reduction of surface runoff. Differences between these urban districts can be quantified so these data can serve as a basis for decision making in urban planning processes.</p><p>As another element of our research, we analyzed the relationship between surface runoff and infiltration in modeling study (SWMM) of rainwater harvesting systems in public institutions (kindergartens). In this part of the research, besides the efficiency of the rainwater harvesting systems, we got data about the extent of surface runoff, evaporation and infiltration on yard of kindergartens.</p>


2005 ◽  
Vol 51 (10) ◽  
pp. 317-325 ◽  
Author(s):  
A.G. Fane ◽  
S.A. Fane

Decentralized wastewater treatment has the potential to provide sanitation that meets criteria for sustainable urban water management in a manner that is less resource intensive and more cost effective than centralized approaches. It can facilitate water reuse and nutrient recovery and can potentially reduce the ecological risks of wastewater system failure and the community health risk in a wastewater reuse scheme. This paper examines the potential role of membrane technology in sustainable decentralized sanitation. It is argued that the combination of membrane technology within decentralized systems can satisfy many of the criteria for sustainable urban water management. In particular, the role of membranes as a dependable barrier in the wastewater treatment process can increase system reliability as well as lowering the latent risks due to wastewater reuse. The modular nature of membranes will allow plant size to range from single dwellings, through clusters to suburb size. It is concluded that realization of the potential for membrane-based technologies in decentralized wastewater treatment will require some progress both technically and institutionally. The areas where advances are necessary are outlined.


Author(s):  
Jaime Nivala ◽  
Andreas Zehnsdorf ◽  
Manfred van Afferden ◽  
Roland A. Müller

2012 ◽  
Vol 66 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Stewart Burn ◽  
Shiroma Maheepala ◽  
Ashok Sharma

Cities worldwide are challenged by a number of urban water issues associated with climate change, population growth and the associated water scarcity, wastewater flows and stormwater run-off. To address these problems decentralised solutions are increasingly being considered by water authorities, and integrated urban water management (IUWM) has emerged as a potential solution to most of these urban water challenges, and as the key to providing solutions incorporating decentralised concepts at a city wide scale. To incorporate decentralised options, there is a need to understand their performance and their impact on a city's total water cycle under alternative water and land management options. This includes changes to flow, nutrient and sediment regimes, energy use, greenhouse gas emissions, and the impacts on rivers, aquifers and estuaries. Application of the IUWM approach to large cities demands revisiting the fundamental role of water system design in sustainable city development. This paper uses the extended urban metabolism model (EUMM) to expand a logical definition for the aims of IUWM, and discusses the role of decentralised systems in IUWM and how IUWM principles can be incorporated into urban water planning.


Water Policy ◽  
2014 ◽  
Vol 17 (1) ◽  
pp. 126-142 ◽  
Author(s):  
P. Mguni ◽  
L. Herslund ◽  
M. B. Jensen

The risk of flooding in urban areas could be better approached by complementing conventional sewer systems with sustainable urban drainage systems (SUDS) for storm-water management. This may be the case for developing world cities like Dar es Salaam with incomplete sewer services, as well as cities like Copenhagen with fully developed sewer systems. This paper explores some theories relevant to understanding how the implementation of SUDS may be one option for supporting a transition towards sustainable urban water management (SUWM). Using interviews, document analysis and observation, a comparison of the opportunities and barriers to the implementation of SUDS in Dar es Salaam and Copenhagen is presented. The results indicate that a bottom-up approach in Dar es Salaam is important, with the community level taking the lead, while in Copenhagen the top-down approach currently employed is promising. The ability of the institutional frameworks of both cities to support the implementation of SUDS is also discussed.


Sign in / Sign up

Export Citation Format

Share Document