decentralized wastewater treatment
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 49)

H-INDEX

13
(FIVE YEARS 3)

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 3
Author(s):  
Solvei Mundbjerg Jensen ◽  
Helmer Søhoel ◽  
Frances Helen Blaikie ◽  
Hans Brix ◽  
Carlos A. Arias

(1) Phosphorus (P) removal has proven difficult in decentralized wastewater treatment systems, and P binding material, installed as an external filter, has been proposed for improving P removal. Especially, calcium (Ca)-rich materials have shown promising results. (2) Five calcareous materials were tested with isotherm batch experiments. The material with the highest P adsorption capacity was selected to undergo different Sol-Gel coatings, i.e., different coating dilution ratios (1:10, 1:5, and 1:1) and exposure periods (5, 10, and 15 min). The seven coated materials were evaluated by isotherm experiments. (3) The maximum adsorption capacity (Qmax) was determined by fitting the Langmuir equation. Qmax for the non-coated materials, and ranged from 0.7 (sand) to 35.1 (Catsan) mg P g−1 DW, while the coated materials ranged from 7.8 to 24.7 mg P g−1 DW depending on the coating. Based on the rotated Principal Component Analysis, the most important parameters for Qmax were the texture and the Ca content. (4) Catsan was the most promising material, but when performing a Sol-Gel coating, a trade-off between preserving Qmax and the coating thickness were evident, as the materials with the thinner coating preserved more of the sorption capacity. The development of P binding materials constitutes a useful technology in decentralized wastewater treatment systems.


Author(s):  
Marcella Moretti Ferreira ◽  
Fabiana Alves Fiore ◽  
Alexandre Saron ◽  
Gustavo Henrique Ribeiro da Silva

Abstract A DEWATS (decentralized wastewater treatment system) is an alternative for expanding sanitation. In Brazil, DEWATS is acknowledged by law and is part of the National Sanitation Plan strategy for achieving the treatment of 85.6% of all the generated wastewater by 2033, improving the current treatment index of 49%. This review's aim is to identify DEWATS studies in Brazil and to verify their potential for narrowing the national wastewater treatment deficit. Hence, aspects such as cost, maintenance, and efficiency were assessed. The archival research method (ARM) was used to identify papers published in the last 20 years through the scientific databases of Scopus, Science Direct, and Web of Science. Data regarding the general characteristics of each study were collected and compared to Brazilian environmental regulation and sanitation status. The results showed the evaluation of different technologies as DEWATS, highlighting their flexibility and potential use in 79% of Brazilian counties. However, although 81% of the studies conducted performance analysis, none covered the main parameters required by Brazilian law. Although legal gaps for DEWATS improvement and consolidation have been identified and the interest in studying DEWATS has been increasing in the last five years, many barriers to their widespread use remain.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cristina Gómez-Román ◽  
José-Manuel Sabucedo ◽  
Mónica Alzate ◽  
Beatriz Medina

According to a report by the World Economic Forum, the water crisis is the fourth most serious global risk to society. The apparent limitations of the hydraulic paradigm to solving this crisis are leading to a change in water management approaches. Recently, decentralized wastewater treatment systems have re-emerged as a partial solution to this problem. However, to implement these systems successfully, it is necessary not only to design this technology but also to have social support and willingness among citizens to use it. Previous studies have shown that these technologies are often perceived as being too costly, and people often do not consider the need for adopting them. However, it has also been pointed out that thinking about these technologies as a sustainable endeavor to reduce human impact on the environment can help to overcome the barriers to usage. Thus, we test whether priming environmental concerns before presenting information about decentralized wastewater treatment plants will increase acceptance of those technologies. In this study, we test whether priming environmental concerns can enhance the acceptance of decentralized wastewater treatment plants even when presenting disadvantages of the technology. In order to do so, we designed an experimental study with a sample of 287 people (85.7% women, Mage=20, 28). The experimental design was 2 (priming the environmental concern vs. no priming)×2 (type of information: only advantages vs. advantages and disadvantages). The results showed that those in the environmental concern priming condition had more positive attitudes and behavioral intentions toward decentralized wastewater treatment plants than those in the control condition group. Participants who received only advantages information had a more positive perception toward the decentralized wastewater systems than in the condition, where disadvantages were present, but in the priming condition this difference was not significant. This implies that priming environmental concern helps to overcome the possible disadvantages that act as barriers to acceptance.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2004
Author(s):  
Aakash Dev ◽  
Timo C. Dilly ◽  
Amin E. Bakhshipour ◽  
Ulrich Dittmer ◽  
S. Murty Bhallamudi

A transition from conventional centralized to hybrid decentralized systems has been increasingly advised recently due to their capability to enhance the resilience and sustainability of urban water supply systems. Reusing treated wastewater for non-potable purposes is a promising opportunity toward the aforementioned resolutions. In this study, we present two optimization models for integrating reusing systems into existing sewerage systems to bridge the supply–demand gap in an existing water supply system. In Model-1, the supply–demand gap is bridged by introducing on-site graywater treatment and reuse, and in Model-2, the gap is bridged by decentralized wastewater treatment and reuse. The applicability of the proposed models is evaluated using two test cases: one a proof-of-concept hypothetical network and the other a near realistic network based on the sewerage network in Chennai, India. The results show that the proposed models outperform the existing approaches by achieving more than a 20% reduction in the cost of procuring water and more than a 36% reduction in the demand for freshwater through the implementation of local on-site graywater reuse for both test cases. These numbers are about 12% and 34% respectively for the implementation of decentralized wastewater treatment and reuse.


Sign in / Sign up

Export Citation Format

Share Document