scholarly journals The Effect of Combined Exercise on Body Composition, Functional Fitness and Muscle Protein Synthesis Related Hormone in Sarcopenic Obesity Elderly Women

2016 ◽  
Vol 7 (3) ◽  
pp. 185-193 ◽  
Author(s):  
Yong-Seok So
2018 ◽  
Vol 74 (10) ◽  
pp. 1598-1604 ◽  
Author(s):  
Melissa M Markofski ◽  
Kristofer Jennings ◽  
Kyle L Timmerman ◽  
Jared M Dickinson ◽  
Christopher S Fry ◽  
...  

Abstract Background Essential amino acids (EAA) and aerobic exercise (AE) acutely and independently stimulate skeletal muscle protein anabolism in older adults. Objective In this Phase 1, double-blind, placebo-controlled, randomized clinical trial, we determined if chronic EAA supplementation, AE training, or a combination of the two interventions could improve muscle mass and function by stimulating muscle protein synthesis. Methods We phone-screened 971, enrolled 109, and randomized 50 independent, low-active, nonfrail, and nondiabetic older adults (age 72 ± 1 years). We used a 2 × 2 factorial design. The interventions were: daily nutritional supplementation (15 g EAA or placebo) and physical activity (supervised AE training 3 days/week or monitored habitual activity) for 24 weeks. Muscle strength, physical function, body composition, and muscle protein synthesis were measured before and after the 24-week intervention. Results Forty-five subjects completed the 24-week intervention. VO2peak and walking speed increased (p < .05) in both AE groups, irrespective of supplementation type, but muscle strength increased only in the EAA + AE group (p < .05). EAA supplementation acutely increased (p < .05) muscle protein synthesis from basal both before and after the intervention, with a larger increase in the EAA + AE group after the intervention. Total and regional lean body mass did not change significantly with any intervention. Conclusions In nonfrail, independent, healthy older adults AE training increased walking speed and aerobic fitness, and, when combined with EAA supplementation, it also increased muscle strength and EAA-stimulated muscle protein synthesis. These increases occurred without improvements in muscle mass.


2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Patrick Kortebein ◽  
Douglas Paddon‐Jones ◽  
Ola Ronsen ◽  
Todd Trappe ◽  
Juan Lombeida ◽  
...  

1997 ◽  
Vol 272 (1) ◽  
pp. E94-E99 ◽  
Author(s):  
G. E. Butterfield ◽  
J. Thompson ◽  
M. J. Rennie ◽  
R. Marcus ◽  
R. L. Hintz ◽  
...  

To assess the effect of recombinant human growth hormone (rhGH) and recombinant human insulin-like growth factor I (rhIGF-I) on protein utilization, 14 women, age 66-82 yr, were invited to participate in studies of nitrogen balance (n = 14), whole body protein turnover (n = 14), and muscle protein synthesis (n = 8). They were studied both 1 wk before and during the last week of a 1-mo regimen, to which they had been randomly assigned, of either 0.025 mg rhGH/kg once daily or rhIGF-I at 0.015 (low), 0.03 (mid), or 0.06 (high) mg/kg twice daily. Nitrogen balance increased significantly after 1 wk of treatment in all groups (P < 0.05). After 1 mo, the magnitude of this effect had diminished by 50% in the rhGH group but remained elevated throughout the treatment period with all doses of rhIGF-I. Both protein synthesis and breakdown, measured by a primed constant infusion of [15N]glycine, were significantly increased with rhGH (9% and 8%, respectively), low-dose rhIGF-I (4.5% and 4%), and high-dose rhIGF-I (18% and 17%). Net synthesis was significantly increased with rhGH (48%) and high- and mid-dose rhIGF-I (27% and 196%, respectively). Muscle protein synthesis as measured by incorporation of [1-13C]leucine increased significantly with rhGH (50%) and the mid (67%) and high (57%) doses of rhIGF-I. These data show that whole body and muscle protein synthesis are responsive to growth factor stimulation in elderly women.


Sign in / Sign up

Export Citation Format

Share Document