Protein Quality to Support Increased Muscle Protein Synthesis

Author(s):  
Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1596 ◽  
Author(s):  
Insaf Berrazaga ◽  
Jérôme Salles ◽  
Karima Laleg ◽  
Christelle Guillet ◽  
Véronique Patrac ◽  
...  

The mechanisms that are responsible for sarcopenia are numerous, but the altered muscle protein anabolic response to food intake that appears with advancing age plays an important role. Dietary protein quality needs to be optimized to counter this phenomenon. Blending different plant proteins is expected to compensate for the lower anabolic capacity of plant-based when compared to animal-based protein sources. The objective of this work was to evaluate the nutritional value of pasta products that were made from a mix of wheat semolina and faba bean, lentil, or split pea flour, and to assess their effect on protein metabolism as compared to dietary milk proteins in old rats. Forty-three old rats have consumed for six weeks isoproteic and isocaloric diets containing wheat pasta enriched with 62% to 79% legume protein (depending on the type) or milk proteins, i.e., casein or soluble milk proteins (SMP). The protein digestibility of casein and SMP was 5% to 14% higher than legume-enriched pasta. The net protein utilization and skeletal muscle protein synthesis rate were equivalent either in rats fed legume-enriched pasta diets or those fed casein diet, but lower than in rats fed SMP diet. After legume-enriched pasta intake, muscle mass, and protein accretion were in the same range as in the casein and SMP groups. Mixed wheat-legume pasta could be a nutritional strategy for enhancing the protein content and improving the protein quality, i.e., amino acid profile, of this staple food that is more adequate for maintaining muscle mass, especially for older individuals.


2020 ◽  
Vol 111 (3) ◽  
pp. 708-718 ◽  
Author(s):  
Sara Y Oikawa ◽  
Michael J Kamal ◽  
Erin K Webb ◽  
Chris McGlory ◽  
Steven K Baker ◽  
...  

ABSTRACT Background Aging appears to attenuate the response of skeletal muscle protein synthesis (MPS) to anabolic stimuli such as protein ingestion (and the ensuing hyperaminoacidemia) and resistance exercise (RE). Objectives The purpose of this study was to determine the effects of protein quality on feeding- and feeding plus RE–induced increases of acute and longer-term MPS after ingestion of whey protein (WP) and collagen protein (CP). Methods In a double-blind parallel-group design, 22 healthy older women (mean ± SD age: 69 ± 3 y, n = 11/group) were randomly assigned to consume a 30-g supplement of either WP or CP twice daily for 6 d. Participants performed unilateral RE twice during the 6-d period to determine the acute (via [13C6]-phenylalanine infusion) and longer-term (ingestion of deuterated water) MPS responses, the primary outcome measures. Results Acutely, WP increased MPS by a mean ± SD 0.017 ± 0.008%/h in the feeding-only leg (Rest) and 0.032 ± 0.012%/h in the feeding plus exercise leg (Exercise) (both P < 0.01), whereas CP increased MPS only in Exercise (0.012 ± 0.013%/h) (P < 0.01) and MPS was greater in WP than CP in both the Rest and Exercise legs (P = 0.02). Longer-term MPS increased by 0.063 ± 0.059%/d in Rest and 0.173 ± 0.104%/d in Exercise (P < 0.0001) with WP; however, MPS was not significantly elevated above baseline in Rest (0.011 ± 0.042%/d) or Exercise (0.020 ± 0.034%/d) with CP. Longer-term MPS was greater in WP than in CP in both Rest and Exercise (P < 0.001). Conclusions Supplementation with WP elicited greater increases in both acute and longer-term MPS than CP supplementation, which is suggestive that WP is a more effective supplement to support skeletal muscle retention in older women than CP. This trial was registered at clinicaltrials.gov as NCT03281434.


2010 ◽  
Vol 44 (14) ◽  
pp. i6-i7 ◽  
Author(s):  
C. Hulston ◽  
E. Wolsk ◽  
T. Grondahl ◽  
C. Yfanti ◽  
G. van Hall

2011 ◽  
Vol 301 (6) ◽  
pp. E1236-E1242 ◽  
Author(s):  
Gabriel J. Wilson ◽  
Donald K. Layman ◽  
Christopher J. Moulton ◽  
Layne E. Norton ◽  
Tracy G. Anthony ◽  
...  

Muscle protein synthesis (MPS) increases after consumption of a protein-containing meal but returns to baseline values within 3 h despite continued elevations of plasma amino acids and mammalian target of rapamycin (mTORC1) signaling. This study evaluated the potential for supplemental leucine (Leu), carbohydrates (CHO), or both to prolong elevated MPS after a meal. Male Sprague-Dawley rats (∼270 g) trained to consume three meals daily were food deprived for 12 h, and then blood and gastrocnemius muscle were collected 0, 90, or 180 min after a standard 4-g test meal (20% whey protein). At 135 min postmeal, rats were orally administered 2.63 g of CHO, 270 mg of Leu, both, or water (sham control). Following test meal consumption, MPS peaked at 90 min and then returned to basal ( time 0) rates at 180 min, although ribosomal protein S6 kinase and eIF4E-binding protein-1 phosphorylation remained elevated. In contrast, rats administered Leu and/or CHO supplements at 135 min postmeal maintained peak MPS through 180 min. MPS was inversely associated with the phosphorylation states of translation elongation factor 2, the “cellular energy sensor” adenosine monophosphate-activated protein kinase-α (AMPKα) and its substrate acetyl-CoA carboxylase, and increases in the ratio of AMP/ATP. We conclude that the incongruity between MPS and mTORC1 at 180 min reflects a block in translation elongation due to reduced cellular energy. Administering Leu or CHO supplements ∼2 h after a meal maintains cellular energy status and extends the postprandial duration of MPS.


2011 ◽  
Vol 43 (12) ◽  
pp. 2249-2258 ◽  
Author(s):  
DILLON K. WALKER ◽  
JARED M. DICKINSON ◽  
KYLE L. TIMMERMAN ◽  
MICAH J. DRUMMOND ◽  
PAUL T. REIDY ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document