scholarly journals Electronic characteristics of CdS quantum dots with defects

Author(s):  
I. M. Kupchak ◽  
D. V. Korbutyak ◽  
N. F. Serpak

Using the density functional theory and the generalized gradient approximation, we calculated the atomic structure, the density of electronic states, and the optical absorption spectra of CdS quantum dots containing intrinsic defects — a cadmium vacancy VCd and an interstitial sulfur atom SI, and substitutional impurities — zinc and copper in place of the atom cadmium — ZnCd and CuCd, respectively. The calculations were performed for the Cd33S33 cluster corresponding to the so-called “magic” size of the quantum dot. This size has a minimum of dangling bonds at the surface and allows the using of such a cluster without the passivation. The structural relaxation during the formation of such defects and the distribution of the wave function of the state corresponding to the top of the valence band are analyzed in details. It has been shown that the cadmium vacancy forms local states in the band gap of CdS nanocrystals, and can serve as centers of radiative recombination. Other defects form energy levels in the depths of the valence band or near its top, but whose energy positions do not correspond to the band maxima in the experimental photoluminescence spectra of CdS quantum dots, both undoped and doped with zinc. The calculated optical absorption spectra demonstrate a strong peak in the region of fundamental absorption of CdS for a cluster containing a substitutional impurity of CuCd, in contrast to other systems where no such peaks are observed. In addition, the replacement of the cadmium atom with copper leads to a decrease in the number of chemical bonds to three and, accordingly, to the largest relaxation among the systems studied. This feature is caused by the crystal structure inhomogeneity of copper sulfide CuxS, which, depending on stoichiometry, can be either a semiconductor or a metal.

1990 ◽  
Vol 04 (16) ◽  
pp. 1009-1016 ◽  
Author(s):  
Y.Z. HU ◽  
S.W. KOCH ◽  
D.B. TRAN THOAI

Coulomb and quantum confinement effects in small semiconductor microcrystallites are analyzed. Energies and wavefunctions for one- and two-electron-hole-pair states are computed and optical absorption spectra are evaluated.


2004 ◽  
Vol 854 ◽  
Author(s):  
Giuliano Malloci ◽  
Giancarlo Cappellini ◽  
Giacomo Mulas ◽  
Guido Satta

ABSTRACTWe present quasi-particle (QP) corrections to the electronic energies for small GaP fullerenes, a new class of nanoscaled materials predicted to be stable and to show spontaneous formation. Using Time-Dependent Density Functional Theory we also computed the optical absorption spectra. The comparison between single-particle and optical absorption spectra yields strong excitonic effects with bonding energy up to 3.5 eV. The QP corrected HOMO-LUMO energy gaps confirm the high stability predicted for such molecules using ground-state computational schemes. The present results can be useful to identify the successful synthesis of these systems via optical absorption and QP spectra.


NANO ◽  
2016 ◽  
Vol 11 (08) ◽  
pp. 1650086 ◽  
Author(s):  
Mukerem H. Abib ◽  
Xudong Yao ◽  
Guopeng Li ◽  
Longfei Mi ◽  
Yajing Chang ◽  
...  

Geometrical structures of (ZnSe)n, [Formula: see text], ([Formula: see text] 1–4) and (MnxZn[Formula: see text]Se[Formula: see text], ([Formula: see text] clusters were calculated using density functional theory (DFT). Optical/absorption spectra, Raman spectra, HOMO–LUMO gap energy and binding energy of each cluster were calculated. The calculated results show the red shift of the optical/absorption spectra band caused by the manganese atoms doped in ZnSe clusters, and the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO–LUMO) gap energy value is decreased. Furthermore, we realized highly monodispersed manganese-doped zinc selenide quantum dots (Mn:ZnSe d-dots) experimentally by using a convenient route. The as-synthesized Mn:ZnSe d-dots were characterized by UV-Vis absorption, photoluminescence (PL), X-ray diffraction (XRD), TEM and HRTEM. The experimental results revealed that the as-prepared Mn:ZnSe d-dots with zinc-blende structure have an average size of about 3.9 nm.


Sign in / Sign up

Export Citation Format

Share Document