scholarly journals Distinct Opsin 3 (Opn3) expression in the developing nervous system during mammalian embryogenesis

eNeuro ◽  
2021 ◽  
pp. ENEURO.0141-21.2021
Author(s):  
Wayne I. L. Davies ◽  
Soufien Sghari ◽  
Brian A. Upton ◽  
Christoffer Nord ◽  
Max Hahn ◽  
...  
2019 ◽  
Author(s):  
Yunlu Zhu ◽  
Samantha C. Crowley ◽  
Andrew J. Latimer ◽  
Gwendolyn M. Lewis ◽  
Rebecca Nash ◽  
...  

1990 ◽  
Vol 38 (2) ◽  
pp. 171-178 ◽  
Author(s):  
D B Zimmer ◽  
M A Magnuson

We used immunohistochemical techniques to analyze the cell distribution of phosphoenolpyruvate carboxykinase (PEPCK) in adult and developing mouse tissues. PEPCK immunoreactivity was detected in many tissues, including some that had not been previously reported to contain PEPCK enzyme activity (bladder, stomach, ovary, vagina, parotid gland, submaxillary gland, and eye). In some multicellular tissues, PEPCK immunoreactivity was observed in multiple cell types. Several tissues (spleen, thyroid, and submaxillary gland) contained no detectable PEPCK immunoreactivity. During development, PEPCK immunoreactivity was associated with the developing nervous system and somites in 15-day embryos. At prenatal day 18, PEPCK immunoreactivity was detected only in the nervous system. At prenatal day 20, PEPCK immunoreactivity was observed in many of the tissues that contain PEPCK in the adult, with the exception of liver, lung, and stomach. PEPCK immunoreactivity was detected in liver at postnatal day 1, lung at postnatal day 7, and stomach after postnatal day 21. The only tissue in which PEPCK immunoreactivity decreased during development was the pancreas, where PEPCK immunoreactivity was detected at prenatal day 20 and was present until postnatal day 21. These results suggest that PEPCK expression is cell-type specific, more widespread than previously thought, and differentially expressed during development.


2012 ◽  
Vol 107 (11) ◽  
pp. 3050-3061 ◽  
Author(s):  
Susan K. Patrick ◽  
J. Adam Noah ◽  
Jaynie F. Yang

Human infants can crawl using several very different styles; this diversity appears at first glance to contradict our previous findings from hands-and-knees crawling, which suggested that there were strict limitations on coordination, imposed either mechanically or by the developing nervous system. To determine whether coordination was similarly restricted across crawling styles, we studied free crawling overground in 22 infants who used a number of different locomotor strategies. Despite the wide variety in the use of individual limbs and even the number of limbs used, the duration of the stance phase increased with duration of cycle, whereas the duration of the swing phase remained more constant. Additionally, all infants showed organized, rhythmic interlimb coordination. Alternating patterns (e.g., trotlike) predominated (86% of infants). Alternatively, yet much less frequently, all limbs used could work in synchrony (14% of infants). Pacelike patterns were never observed, even in infants that crawled with the belly remaining in contact with the ground so that stability was not a factor. To explore the robustness of the interlimb coordination, a perturbation that prolonged swing of the leg was imposed on 14 additional infants crawling on hands and knees overground or on the treadmill. The perturbation led to a resetting of the crawling pattern, but never to a change in the coordination of the limbs. The findings concur with those regarding other infant animals, together suggesting that the nervous system itself limits the coordination patterns available at a young age.


1991 ◽  
Vol 331 (1261) ◽  
pp. 259-262

In the developing vertebrate nervous system the survival of neurons becomes dependent on the supply of a neurotrophic factor from their targets when their axons reach these targets. To determine how the onset of neurotrophic factor dependency is coordinated with the arrival of axons in the target field, we have studied the growth and survival of four populations of cranial sensory neurons whose axons have markedly different distances to grow to reach their targets. Axonal growth rate both in vivo and in vitro is related to target distance; neurons with more distant targets grow faster. The onset trophic factor dependency in culture is also related to target distance; neurons with more distant targets survive longer before becoming trophic factor dependent. These data suggest that programmes of growth and survival in early neurons play an important role in coordinating the timing of trophic interactions in the developing nervous system.


1998 ◽  
Vol 18 (22) ◽  
pp. 9335-9341 ◽  
Author(s):  
Vladimir L. Buchman ◽  
Hamish J. A. Hunter ◽  
Luzia G. P. Pinõn ◽  
Jane Thompson ◽  
Eugenia M. Privalova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document