scholarly journals Activation of Granule Cell Interneurons by Two Divergent Local Circuit Pathways in the Rat Olfactory Bulb

2020 ◽  
Vol 40 (50) ◽  
pp. 9701-9714
Author(s):  
R. Todd Pressler ◽  
Ben W. Strowbridge
1986 ◽  
Vol 30 (2) ◽  
pp. 283-286 ◽  
Author(s):  
Santiago Segovia ◽  
Azucena Valencia ◽  
JoséMaria Calés ◽  
Antonio Guillamón

2009 ◽  
Vol 101 (4) ◽  
pp. 2052-2061 ◽  
Author(s):  
Ambarish S. Ghatpande ◽  
Alan Gelperin

The mammalian olfactory bulb receives multiple modulatory inputs, including a cholinergic input from the basal forebrain. Understanding the functional roles played by the cholinergic input requires an understanding of the cellular mechanisms it modulates. In an in vitro olfactory bulb slice preparation we demonstrate cholinergic muscarinic modulation of glutamate release onto granule cells that results in γ-aminobutyric acid (GABA) release onto mitral/tufted cells. We demonstrate that the broad-spectrum cholinergic agonist carbachol triggers glutamate release from mitral/tufted cells that activates both AMPA and NMDA receptors on granule cells. Activation of the granule cell glutamate receptors leads to calcium influx through voltage-gated calcium channels, resulting in spike-independent, asynchronous GABA release at reciprocal dendrodendritic synapses that granule cells form with mitral/tufted cells. This cholinergic modulation of glutamate release persists through much of postnatal bulbar development, suggesting a functional role for cholinergic inputs from the basal forebrain in bulbar processing of olfactory inputs and possibly in postnatal development of the olfactory bulb.


2002 ◽  
Vol 88 (1) ◽  
pp. 64-85 ◽  
Author(s):  
Graeme Lowe

The mammalian olfactory bulb is a geometrically organized signal-processing array that utilizes lateral inhibitory circuits to transform spatially patterned inputs. A major part of the lateral circuitry consists of extensively radiating secondary dendrites of mitral cells. These dendrites are bidirectional cables: they convey granule cell inhibitory input to the mitral soma, and they conduct backpropagating action potentials that trigger glutamate release at dendrodendritic synapses. This study examined how mitral cell firing is affected by inhibitory inputs at different distances along the secondary dendrite and what happens to backpropagating action potentials when they encounter inhibition. These are key questions for understanding the range and spatial dependence of lateral signaling between mitral cells. Backpropagating action potentials were monitored in vitro by simultaneous somatic and dendritic whole cell recording from individual mitral cells in rat olfactory bulb slices, and inhibition was applied focally to dendrites by laser flash photolysis of caged GABA (2.5-μm spot). Photolysis was calibrated to activate conductances similar in magnitude to GABAA-mediated inhibition from granule cell spines. Under somatic voltage-clamp with CsCl dialysis, uncaging GABA onto the soma, axon initial segment, primary and secondary dendrites evoked bicuculline-sensitive currents (up to −1.4 nA at −60 mV; reversal at ∼0 mV). The currents exhibited a patchy distribution along the axon and dendrites. In current-clamp recordings, repetitive firing driven by somatic current injection was blocked by uncaging GABA on the secondary dendrite ∼140 μm from the soma, and the blocking distance decreased with increasing current. In the secondary dendrites, backpropagated action potentials were measured 93–152 μm from the soma, where they were attenuated by a factor of 0.75 ± 0.07 (mean ± SD) and slightly broadened (1.19 ± 0.10), independent of activity (35–107 Hz). Uncaging GABA on the distal dendrite had little effect on somatic spikes but attenuated backpropagating action potentials by a factor of 0.68 ± 0.15 (0.45–0.60 μJ flash with 1-mM caged GABA); attenuation was localized to a zone of width 16.3 ± 4.2 μm around the point of GABA release. These results reveal the contrasting actions of inhibition at different locations along the dendrite: proximal inhibition blocks firing by shunting somatic current, whereas distal inhibition can impose spatial patterns of dendrodendritic transmission by locally attenuating backpropagating action potentials. The secondary dendrites are designed with a high safety factor for backpropagation, to facilitate reliable transmission of the outgoing spike-coded data stream, in parallel with the integration of inhibitory inputs.


Sign in / Sign up

Export Citation Format

Share Document