scholarly journals BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo

Neuroscience ◽  
2015 ◽  
Vol 304 ◽  
pp. 146-160 ◽  
Author(s):  
B. McDole ◽  
C. Isgor ◽  
C. Pare ◽  
K. Guthrie
2013 ◽  
Vol 555 ◽  
pp. 36-41 ◽  
Author(s):  
Victoria Heimer-McGinn ◽  
Anita C.H. Murphy ◽  
Jun Chul Kim ◽  
Susan M. Dymecki ◽  
Paul W. Young

2021 ◽  
pp. 105253
Author(s):  
Katherine M. Bland ◽  
Adam Aharon ◽  
Eden L. Widener ◽  
M. Irene Song ◽  
Zachary O. Casey ◽  
...  

2017 ◽  
Vol 114 (35) ◽  
pp. 9469-9474 ◽  
Author(s):  
Ethan M. Anderson ◽  
Anne Marie Wissman ◽  
Joyce Chemplanikal ◽  
Nicole Buzin ◽  
Daniel Guzman ◽  
...  

Chronic cocaine use is associated with prominent morphological changes in nucleus accumbens shell (NACsh) neurons, including increases in dendritic spine density along with enhanced motivation for cocaine, but a functional relationship between these morphological and behavioral phenomena has not been shown. Here we show that brain-derived neurotrophic factor (BDNF) signaling through tyrosine kinase B (TrkB) receptors in NACsh neurons is necessary for cocaine-induced dendritic spine formation by using either localized TrkB knockout or viral-mediated expression of a dominant negative, kinase-dead TrkB mutant. Interestingly, augmenting wild-type TrkB expression after chronic cocaine self-administration reverses the sustained increase in dendritic spine density, an effect mediated by TrkB signaling pathways that converge on extracellular regulated kinase. Loss of TrkB function after cocaine self-administration, however, leaves spine density intact but markedly enhances the motivation for cocaine, an effect mediated by specific loss of TrkB signaling through phospholipase Cgamma1 (PLCγ1). Conversely, overexpression of PLCγ1 both reduces the motivation for cocaine and reverses dendritic spine density, suggesting a potential target for the treatment of addiction in chronic users. Together, these findings indicate that BDNF-TrkB signaling both mediates and reverses cocaine-induced increases in dendritic spine density in NACsh neurons, and these morphological changes are entirely dissociable from changes in addictive behavior.


1998 ◽  
Vol 1 (3) ◽  
pp. 237-242 ◽  
Author(s):  
M.I. Pérez-Vega ◽  
G. Barajas-López ◽  
A.R. del Angel-Meza ◽  
I. González-Burgos ◽  
A. Feria-Velasco

2016 ◽  
Author(s):  
Tharkika Nagendran ◽  
Rylan S. Larsen ◽  
Rebecca L. Bigler ◽  
Shawn B. Frost ◽  
Benjamin D. Philpot ◽  
...  

AbstractInjury of CNS nerve tracts remodels circuitry through dendritic spine loss and hyper-excitability, thus influencing recovery. Due to the complexity of the CNS, a mechanistic understanding of injury-induced synaptic remodeling remains unclear. Using microfluidic chambers to separate and injure distal axons, we show that axotomy causes retrograde dendritic spine loss at directly injured pyramidal neurons followed by retrograde presynaptic hyper-excitability. These remodeling events require activity at the site of injury, axon-to-soma signaling, and transcription. Similarly, directly injured corticospinal neurons in vivo also exhibit a specific increase in spiking following axon injury. Axotomy-induced hyper-excitability of cultured neurons coincides with elimination of inhibitory inputs onto injured neurons, including those formed onto dendritic spines. Netrin-1 downregulation occurs following axon injury and exogenous netrin-1 applied after injury normalizes spine density, presynaptic excitability, and inhibitory inputs at injured neurons. Our findings show that intrinsic signaling within damaged neurons regulates synaptic remodeling and involves netrin-1 signaling.


Sign in / Sign up

Export Citation Format

Share Document