homing behavior
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 19)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Hayato Saneyoshi ◽  
Yousuke Koshino ◽  
Ryoutarou Ishida ◽  
Itsuki Tatsuoka ◽  
Hokuto Shirakawa ◽  
...  

2021 ◽  
Author(s):  
Quentin Rougemont ◽  
Amanda Xuereb ◽  
Xavier Dallaire ◽  
Jean-Sebastien Moore ◽  
Eric Normandeau ◽  
...  

Inferring the genomic basis of local adaptation is a long-standing goal of evolutionary biology. Beyond its fundamental evolutionary implications, such knowledge can guide conservation decisions for populations of conservation and management concern. Here, we investigated the genomic basis of local adaptation in the Coho salmon (Oncorhynchus kisutch) across its entire North American range. We hypothesized that extensive spatial variation in environmental conditions and the species homing behavior may promote the establishment of local adaptation. We genotyped 7,829 individuals representing 217 sampling locations at more than 100,000 high-quality RADseq loci to investigate how recombination might affect the detection of loci putatively under selection and took advantage of the precise description of the demographic history of the species from our previous work to draw accurate population genomic inferences about local adaptation. Results indicated that genetic differentiation scans and genetic-environment association analyses were both significantly affected by variation in recombination rate as low recombination regions displayed an increased number of outliers. By taking these confounding factors into consideration, we revealed that migration distance was the primary selective factor driving local adaptation and partial parallel divergence among distant populations. Moreover, we identified several candidates SNP associated with long distance migration and altitude including a gene known to be involved in adaptation to altitude in other species. The evolutionary implications of our findings are discussed along with conservation applications.


Biology Open ◽  
2021 ◽  
Author(s):  
Sofyan Alyan

Camels (Camelus dromedarius) are known to have good navigational abilities and can find their home after displacement to far places; however, there are no studies available on the navigational strategies employed by the camels in homing behavior. Thus, the aim of this study was to investigate the strategies by displacing female camels equipped with GPS trackers 6 km away from home to totally unfamiliar locations. The experiments comprised displacing nursing or non-nursing female camels 6 km from their living pens to an unfamiliar release site. Some camels were taken to the release site on foot, others were hauled on a truck, both during daytime and night-time. Displacements were either straight to the release points, or they consisted in convoluted paths. As a result, the camels were able to return home efficiently and rather directly after straight outward journeys but failed to do so after having performed convoluted trips to the release point. Moreover, impairing olfactory, visual, and auditory inputs by using mouth/nose muzzles eye covers and headphones did not affect homing ability. Based on these experiments the most likely hypothesis is that during their small-scale round trips the camels relied on path integration, and that this strategy is disrupted when the camels were subjected to disorientation procedures before release.


Author(s):  
Jingru Yu ◽  
Dong Mo ◽  
Ningke Xie ◽  
Simon Hu ◽  
Xiqun (Michael) Chen
Keyword(s):  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11568
Author(s):  
Carolina Johnstone ◽  
Montse Pérez ◽  
Estrella Malca ◽  
José María Quintanilla ◽  
Trika Gerard ◽  
...  

The highly migratory Atlantic bluefin tuna (ABFT) is currently managed as two distinct stocks, in accordance with natal homing behavior and population structuring despite the absence of barriers to gene flow. Larval fish are valuable biological material for tuna molecular ecology. However, they have hardly been used to decipher the ABFT population structure, although providing the genetic signal from successful breeders. For the first time, cooperative field collection of tuna larvae during 2014 in the main spawning area for each stock, the Gulf of Mexico (GOM) and the Mediterranean Sea (MED), enabled us to assess the ABFT genetic structure in a precise temporal and spatial frame exclusively through larvae. Partitioning of genetic diversity at nuclear microsatellite loci and in the mitochondrial control region in larvae spawned contemporarily resulted in low significant fixation indices supporting connectivity between spawners in the main reproduction area for each population. No structuring was detected within the GOM after segregating nuclear diversity in larvae spawned in two hydrographically distinct regions, the eastern GOM (eGOM) and the western GOM (wGOM), with the larvae from eGOM being more similar to those collected in the MED than the larvae from wGOM. We performed clustering of genetically characterized ABFT larvae through Bayesian analysis and by Discriminant Analysis of Principal Components (DAPC) supporting the existence of favorable areas for mixing of ABFT spawners from Western and Eastern stocks, leading to gene flow and apparent connectivity between weakly structured populations. Our findings suggest that the eastern GOM is more prone for the mixing of breeders from the two ABFT populations. Conservation of this valuable resource exploited for centuries calls for intensification of tuna ichthyoplankton research and standardization of genetic tools for monitoring population dynamics.


2021 ◽  
Author(s):  
Sonja Giger ◽  
Moritz Hofer ◽  
Marijana Miljkovic-Licina ◽  
Sylke Hoehnel ◽  
Nathalie Brandenberg ◽  
...  

In many leukemia patients, a poor prognosis is attributed either to the development of chemotherapy resistance by leukemic stem cells (LSCs) or to the inefficient engraftment of transplanted hematopoietic stem/progenitor cells (HSPCs) into the bone marrow (BM). Here, we build a 3D in vitro model system of bone marrow organoids (BMOs) that recapitulate several structural and cellular components of native BM. These organoids are formed in a high-throughput manner from the aggregation of endothelial and mesenchymal cells within hydrogel microwells. Accordingly, the mesenchymal compartment shows partial maintenance of its self-renewal and multilineage potential, while endothelial cells self-organize into an interconnected vessel-like network. Intriguingly, such a vascular compartment enhances the recruitment of HSPCs in a chemokine ligand/receptor-dependent manner, reminiscent of HSPC homing behavior in vivo. Additionally, we also model LSC migration and nesting in BMOs, thus highlighting the potential of this system as a well accessible and scalable preclinical model for candidate drug screening and patient-specific assays.


2021 ◽  
Author(s):  
Fanrong Xiao ◽  
Rongping Bu ◽  
Liu Lin ◽  
Jichao Wang ◽  
Haitao Shi

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yiqiang Fu ◽  
Shufang Wang ◽  
Benping Chen ◽  
Simon Dowell ◽  
Zhengwang Zhang

AbstractIn this study, we report an unusual homing behavior of the Sichuan Partridge (Arborophila rufipectus) at the Laojunshan National Nature Reserve, Sichuan Province, China. Hen Sichuan Partridges led the chicks back to the nests where they hatched in the evening and roosted there over night. This behavior lasted 6.7 ± 4.3 nights (range = 1–15; n = 13) after the chicks hatched. At this stage, the hens became very vigilant to predators and human disturbance. If disturbed, they often abandoned the nests immediately and no longer returned thereafter. The ambient temperature at night during the early brooding period of Sichuan Partridge at our study site was ~ 12.4 °C. Our findings suggest that hen Sichuan Partridges may make trade-offs between nest predation risks versus the thermoregulatory needs of their young.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 22-23
Author(s):  
Sydney Felker ◽  
Archana Shrestha ◽  
Punam Malik

Gene therapy/editing of CD34+ HSPC ex vivo, followed by their transplantation, can cure a variety of hematologic diseases. However, a substantial loss of HSPC occurs from collection to transplant. Losses occur during processing for HSPC enrichment, ex vivo genetic manipulation and culture, formulation, and testing prior to transplant. Further, HSPC are lost to peripheral organs during homing when delivered intravenously (IV), reducing the effective gm HSPC dose; a loss compounded by the lack of helper cells that aid in the homing and engraftment process which are removed during enrichment. Direct BM delivery of gm HSPC can overcome some of these limitations. This has been tried previously, with non-enriched whole cord blood (CB) and non-gm HSPC, with conflicting results. We hypothesized that BM delivery of a limited dose of gm adult HSPC would improve long-term repopulation over that of IV delivery by bypassing HSPC loss during homing. Using bioluminescent imaging, we determined that CB HSPC transduced with a luciferase lentiviral vector (LV) delivered by intra-femoral (IF) injection localized to the injected femur, validating our injection method. Next, we delivered mobilized peripheral blood (MPB) HSPC transduced with a GFP LV into irradiated NOD.LtSz-scid IL2rg -/- (NSG) mice via IV or IF injection in limiting dilution. Total human engraftment (hCD45+ cells), transduced human engraftment (hCD45+GFP+ cells), and multi-lineage engraftment were measured in the BM at 3- and 6-months post-transplant. HSPC gave rise to a bi-lineage (B-myeloid) graft at 3 months, suggesting hematopoietic progenitor cell (HPC) engraftment, and a multi-lineage graft (hCD33+, hCD19+, hCD3+, and hCD34+ cells) at 6 months, suggesting engraftment from a long-term repopulating cell or hematopoietic stem cell (HSC). At 3 months, IF delivery of HSPC resulted in significantly higher total and transduced human cell engraftment, measured in the non-injected femur (Table 1). The engraftment was bi-lineage. At 6 months, IF delivery of HSPC no longer significantly increased engraftment over IV delivery (Table 1). However, a multi-lineage graft was present, indicating full hematopoietic repopulation. There was no significant difference in the lineage output between either delivery method at 3 or 6 months. These data suggest that HPC homed and engrafted more efficiently than HSC, when delivered IF. Alternatively, IF delivery altered the BM microenvironment, allowing preferential homing of HPC. However, CD34- cells injected IF, to simulate pressure and passage of cells through the BM with IF delivery, followed by IV delivery of CD34+ cells (sham IF with IV HSPC delivery) resulted in similar homing patterns to CD34+ cells delivered IV (p=0.1, Figure 1A), suggesting that differences between IV and IF delivery were likely due to cell-intrinsic rather than cell-extrinsic differences between HPC and HSC. To study the mechanism of preferential engraftment of HPC over HSC with IF delivery, we analyzed expression of the major homing receptors CXCR4 and VLA-4 on HPC and HSC. CXCR4 (Figure 1B) and VLA-4 were both expressed at significantly higher levels on HPC than on HSC (CXCR4 p<0.01; VLA-4 p<0.05) and their expression increased with increasing culture time and with HSPC cycling. However, VLA-4 expression was significantly increased in GFP+ (MFI 65313 ± 4750) compared to GFP- (MFI 48969 ± 2099; p<0.01) HSPC. CXCR4 expression was similar in both GFP+ (MFI 4261 ± 189) and GFP- (MFI 5245 ± 1186) HSPC, mimicking the in vivo engraftment pattern of GFP+ and GFP- cells, suggesting that CXCR4 may be the molecule responsible for enhancing HPC homing and engraftment with BM delivery. An initial experiment shows that when we remove the high CXCR4 expressing CD34+38+ HPC and deliver HSC-enriched CD34+38- cells IV or IF, IF delivery results in higher long-term engraftment (additional experiments ongoing, Figure 1C, D). These data support the hypothesis that cell-intrinsic differences in the homing behavior of HSC and HPC is likely due to their differential expression of CXCR4. Studies underway on blockade of CXCR4 or VLA-4 on gm HPC and/or gm HSC followed by their IF or IV delivery will be presented. Overall, we show IV delivery of gm HSPC is comparable to BM delivery. However, as HSC-enriched cells become clinically available for genetic therapies, BM delivery of enriched gm HSC may result in superior engraftment. Disclosures Malik: Aruvant Sciences, Forma Therapeutics, Inc.: Consultancy; Aruvant Sciences, CSL Behring: Patents & Royalties.


Hydrobiologia ◽  
2020 ◽  
Author(s):  
Ruben Alexander Pettersen ◽  
Claudia Junge ◽  
Kjartan Østbye ◽  
Tor Atle Mo ◽  
Leif Asbjørn Vøllestad

Abstract Understanding how populations are structured in space and time is a central question in evolutionary biology. Parasites and their hosts are assumed to evolve together, however, detailed understanding of mechanisms leading to genetic structuring of parasites and their hosts are lacking. As a parasite depends on its host, studying the genetic structure of both parasite and host can reveal important insights into these mechanisms. Here, genetic structure of the monogenean parasite Gyrodactylus thymalli and its host the European grayling (Thymallus thymallus) was investigated in 10 tributaries draining into the large Lake Mjøsa in Norway. The population genetic structure of spawning grayling was studied using microsatellite genotyping, while G. thymalli was studied by sequencing a mitochondrial DNA gene (dehydrogenase subunit 5). Two main genetic clusters were revealed in grayling, one cluster comprising grayling from the largest spawning population, while the remaining tributaries formed the second cluster. For both taxa, some genetic differentiation was observed among tributaries, but there was no clear isolation-by-distance signature. The structuring was stronger for the host than for the parasite. These results imply that moderate to high levels of gene flow occur among the sub-populations of both taxa. The high parasite exchange among tributaries could result from a lack of strong homing behavior in grayling as well as interactions among individual fish outside of the spawning season, leading to frequent mixing of both host and parasite.


Sign in / Sign up

Export Citation Format

Share Document