scholarly journals Retinoic Acid Receptor RARα-Dependent Synaptic Signaling Mediates Homeostatic Synaptic Plasticity at the Inhibitory Synapses of Mouse Visual Cortex

2018 ◽  
Vol 38 (49) ◽  
pp. 10454-10466 ◽  
Author(s):  
Lei R. Zhong ◽  
Xin Chen ◽  
Esther Park ◽  
Thomas C. Südhof ◽  
Lu Chen
2019 ◽  
Vol 116 (14) ◽  
pp. 7113-7122 ◽  
Author(s):  
Yu-Tien Hsu ◽  
Jie Li ◽  
Dick Wu ◽  
Thomas C. Südhof ◽  
Lu Chen

Homeostatic synaptic plasticity is a stabilizing mechanism engaged by neural circuits in response to prolonged perturbation of network activity. The non-Hebbian nature of homeostatic synaptic plasticity is thought to contribute to network stability by preventing “runaway” Hebbian plasticity at individual synapses. However, whether blocking homeostatic synaptic plasticity indeed induces runaway Hebbian plasticity in an intact neural circuit has not been explored. Furthermore, how compromised homeostatic synaptic plasticity impacts animal learning remains unclear. Here, we show in mice that the experience of an enriched environment (EE) engaged homeostatic synaptic plasticity in hippocampal circuits, thereby reducing excitatory synaptic transmission. This process required RARα, a nuclear retinoic acid receptor that doubles as a cytoplasmic retinoic acid-induced postsynaptic regulator of protein synthesis. Blocking RARα-dependent homeostatic synaptic plasticity during an EE experience by ablating RARα signaling induced runaway Hebbian plasticity, as evidenced by greatly enhanced long-term potentiation (LTP). As a consequence, RARα deletion in hippocampal circuits during an EE experience resulted in enhanced spatial learning but suppressed learning flexibility. In the absence of RARα, moreover, EE experience superactivated mammalian target of rapamycin (mTOR) signaling, causing a shift in protein translation that enhanced the expression levels of AMPA-type glutamate receptors. Treatment of mice with the mTOR inhibitor rapamycin during an EE experience not only restored normal AMPA-receptor expression levels but also reversed the increases in runaway Hebbian plasticity and learning after hippocampal RARα deletion. Thus, our findings reveal an RARα- and mTOR-dependent mechanism by which homeostatic plasticity controls Hebbian plasticity and learning.


Neuron ◽  
2008 ◽  
Vol 60 (2) ◽  
pp. 308-320 ◽  
Author(s):  
Jason Aoto ◽  
Christine I. Nam ◽  
Michael M. Poon ◽  
Pamela Ting ◽  
Lu Chen

2017 ◽  
Author(s):  
Zein Rami El ◽  
Amanda J Rickard ◽  
Golib Dzib Jose Felipe ◽  
Benoit Samson-Couterie ◽  
Angelique Rocha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document