scholarly journals Variation, Signal, and Noise in Cerebellar Sensory-Motor Processing for Smooth-Pursuit Eye Movements

2007 ◽  
Vol 27 (25) ◽  
pp. 6832-6842 ◽  
Author(s):  
J. F. Medina ◽  
S. G. Lisberger
2011 ◽  
Vol 106 (2) ◽  
pp. 741-753 ◽  
Author(s):  
Yu-Qiong Niu ◽  
Stephen G. Lisberger

We have investigated how visual motion signals are integrated for smooth pursuit eye movements by measuring the initiation of pursuit in monkeys for pairs of moving stimuli of the same or differing luminance. The initiation of pursuit for pairs of stimuli of the same luminance could be accounted for as a vector average of the responses to the two stimuli singly. When stimuli comprised two superimposed patches of moving dot textures, the brighter stimulus suppressed the inputs from the dimmer stimulus, so that the initiation of pursuit became winner-take-all when the luminance ratio of the two stimuli was 8 or greater. The dominance of the brighter stimulus could be not attributed to either the latency difference or the ratio of the eye accelerations for the bright and dim stimuli presented singly. When stimuli comprised either spot targets or two patches of dots moving across separate locations in the visual field, the brighter stimulus had a much weaker suppressive influence; the initiation of pursuit could be accounted for by nearly equal vector averaging of the responses to the two stimuli singly. The suppressive effects of the brighter stimulus also appeared in human perceptual judgments, but again only for superimposed stimuli. We conclude that one locus of the interaction of two moving visual stimuli is shared by perception and action and resides in local inhibitory connections in the visual cortex. A second locus resides deeper in sensory-motor processing and may be more closely related to action selection than to stimulus selection.


1994 ◽  
Vol 11 (3) ◽  
pp. 411-424 ◽  
Author(s):  
Joshua D. Schwartz ◽  
Stephen G. Lisberger

AbstractSmooth pursuit eye movements allow primates to keep gaze pointed at small objects moving across stationary surroundings. In monkeys trained to track a small moving target, we have injected brief perturbations of target motion under different initial conditions as probes to read out the state of the visuo-motor pathways that guide pursuit. A large eye movement response was evoked if the perturbation was applied to a moving target the monkey was tracking. A small response was evoked if the same perturbation was applied to a stationary target the monkey was fixating. The gain of the response to the perturbation increased as a function of the initial speed of target motion and as a function of the interval from the onset of target motion to the time of the perturbation. The response to the perturbation also was direction selective. Gain was largest if the perturbation was along the axis of ongoing target motion and smallest if the perturbation was orthogonal to the axis of target motion. We suggest that two parallel sets of visual motion pathways through the extrastriate visual cortex may mediate, respectively, the visuo-motor processing for pursuit and the modulation of the gain of transmission through those pathways.


2011 ◽  
Vol 70 ◽  
pp. 352-352 ◽  
Author(s):  
K Strand Brodd ◽  
K Rosander ◽  
H Grönqvist ◽  
G Holmström ◽  
B Strömberg ◽  
...  

1983 ◽  
Vol 79 (2-3) ◽  
pp. 190-192 ◽  
Author(s):  
G. Tedeschi ◽  
P. R. M. Bittencourt ◽  
A. T. Smith ◽  
A. Richens

1975 ◽  
Vol 44 (2) ◽  
pp. 111-115 ◽  
Author(s):  
Philip S. Holzman ◽  
Deborah L. Levy ◽  
Eberhard H. Uhlenhuth ◽  
Leonard R. Proctor ◽  
Daniel X. Freedman

Sign in / Sign up

Export Citation Format

Share Document